
1﻿

1	 Introduction

Nowadays, software is everywhere, from commercial enterprises to virtually
all areas of our day-to-day professional, public, and private lives. Air travel,
phone calls, bank transfers, or driving would all be next to impossible with-
out software. Software-controlled components can be found in every home
and in many everyday devices, from washing machines to cars [BJ+06]. Soft-
ware is not usually autonomous, but is instead embedded along with hard-
ware and electronics, or as part of the business processes that companies use
to generate value [TT+00].

The value and commercial success of companies and products is increas-
ingly determined by software and software quality (see [BM00], [SV99],
[TT+00]). Software engineers are thus faced with the challenge of imple-
menting increasingly complex requirements at ever-increasing speed using
ever-decreasing budgets while maintaining a high level of software quality.

Continual increase in the size and complexity of software systems has
made them some of the most complex human-made systems ever created.
The best example is the Internet, which is a truly global software-based
system. Internet is now available beyond the bounds of our home planet on
the International Space Station (ISS).

A structured and systematic approach to design is essential for the
success of software-based systems. Despite the use of established software
development methods, the number of unsuccessful software projects remains
alarmingly large. To counter this, we need to avoid as many errors as pos-
sible, or identify and eliminate them during the early phases of software
engineering. Requirements engineering and software architecture are two of
these phases. In the words of Ernst Denert, one of the fathers of methodical
software development, software architecture is the “Ultimate software engi-
neering discipline” (taken from Denert’s foreword in [Sie04]).

2 1  Introduction

1.1	 	Software architecture as an aspect of software
engineering

Problems with software projects were identified as early as the 1960s, and
were referred to then as “the software crisis”. From 7–11 October 1968, the
NATO Science Committee invited 62 internationally renowned researchers
and experts to a conference in Garmisch, Germany, to address the future of
software development. This conference is now regarded as the birth of mod-
ern software engineering [Dij72].

Figure 1-1	 Publications on the subject of software architecture since 1973 [Reu12]

Compared to traditional engineering disciplines (such as construction) that
can fall back on several thousand years of experience, software engineering
is still an extremely young discipline. It is therefore no surprise that the
sub-discipline of software architecture is even younger. Figure 1-1 shows an
increasing number of publications on the subject of software architecture
from the 1990s onward [Reu12]. These figures are taken from The Web of
Knowledge—one of the largest and most renowned publication databases.

With a view to the long history of construction architecture, Marcus
Vitruvius Pollio (a Roman architect from the first century BC) was an archi-
tectural pioneer. In De architecture—nowadays known as Ten Books on
Architecture [Vit60]—he argued that good architecture can be achieved
using a clever combination of the following elements:

31.1  Software architecture as an aspect of software engineering

nn Utilitas (usefulness):	
The building performs its function.

nn Firmitas (solidity):	
The building is stable and long-lasting.

nn Venustas (elegance):	
The building is aesthetically pleasing.

Figure 1-2	 Architecture in ancient Rome

This hypothesis can be directly applied to the discipline of software architec-
ture. The objective of software architecture (and thus a software architect’s
primary task) is to construct a system that balances the following three
attributes:

nn Utilitas (usefulness):	
The software fulfills the functional and non-functional requirements of the
customer and its users.

nn Firmitas (solidity):	
The software is stable in terms of the specified quality requirements (for
example, the number of simultaneously supported users). It also has to
allow future enhancements without having to completely rebuild the sys-
tem.

nn Venustas (elegance):	
The software’s structure makes it intuitive to use, but also easy to maintain
and develop.

4 1  Introduction

1.2	 iSAQB: The International Software Architecture
Qualification Board

Software architecture is an extremely young discipline and, despite many
publications on the subject, various opinions still exist regarding its pre-
cise scope and design in the context of computer science and information
technology. The tasks and responsibilities of software architects are defined
in very different ways and are subject to continual renegotiation during a
project.

In contrast, software engineering disciplines such as project management,
requirements engineering, and testing have a more mature knowledge base.
Various independent organizations offer training curricula that clearly define
the knowledge and skills required by these disciplines (for testing, visit www.
istqb.org; for requirements engineering, visit www.ireb.org; for project man-
agement, visit www.pmi.org).

In 2008, a group of software architecture experts from business, indus-
try, and scientific communities formed the International Software Architecture
Qualification Board as a registered association under German law (iSAQB
e.V., www.isaqb.org). The goal of the iSAQB is to define product- and manu-
facturer-independent standards for the training and certification of software
architects. Certifications at Foundation, Advanced, and Expert levels allow
software architects to certify their knowledge, experience, and skills using a
recognized procedure (see figure 1-3).

Because it eliminates the terminological uncertainty referred to earlier,
standardized training benefits established and aspiring software architects,
companies, and training organizations. Precise training curricula are essen-
tial for the examination and certification of aspiring software, and ensure
that high-quality training is available on the basis of an accepted canon of
knowledge.

Certification as a Certified Professional for Software Architecture (CPSA)
is carried out by independent bodies. CPSA Foundation Level certification is
based on a subset of a non-public catalogue of demanding questions devel-
oped by the iSAQB and matched to the curriculum. Advanced Level certifi-
cation also requires practical certification and participation in licensed train-
ing courses (or acknowledgement of equivalent non-iSAQB qualifications).
Expert Level certification is currently in development.

51.3  Certified Professional for Software Architecture – Foundation and Advanced Level

Figure 1-3	 iSAQB certification levels (www.isaqb.org)

Various licensed training institutions offer multi-day courses designed to
refresh and deepen candidates’ existing knowledge in these subject areas.
Participation in a course is recommended, but is not a prerequisite for regis-
tration for the certification examination.

1.3	 Certified Professional for Software Architecture –
Foundation and Advanced Level

The iSAQB has now defined clear certification guidelines for CPSA Founda­
tion Level and Advanced Level certification.

Advanced Level certification is modular and consists of individual
courses dedicated to specific core competences for IT professionals:

nn Methodical competence	
Technology-independent skills for systematic approaches to IT projects

nn Technical competence 	
Skills in the use of technology for solving design tasks

nn Communicative competence	
Communication, presentation, rhetorical, and meeting skills that increase
efficiency during the software development process

Expert Level
(planned)

Advanced Level

Foundation Level

The Expert Level addresses experienced,
professional software architects and consists of a series

of modules with different specialized topics. A Certified Professional
 for Software Architecture Expert Level Block, which will requires

 the foundation and advanced level certificate, is in the planning stage.

The Advanced Level deepens the foundation level topics.
 Developed according to iSAQB’s specification, this training

scheme follows a modular structure and requires successful trainees
to demonstrate comprehensive knowledge and skills

(Examples: Architecture Documentation, SOA, Soft Skills for Software Architects).

Training to become an iSAQB Certified Professional for Software Architecture comprises all knowledge
areas a specialist for software architecture is required to know. The training modules deal with tasks, methodologies,
 techniques and technologies for the development of software architectures. Participants get to know all aspects that

are essential for software architectures. In addition to technological factors, organizational and social factors get addressed.
 Thus, the tasks of a specialist for software architecture are broadly covered.

6 1  Introduction

Prerequisites for Advanced Level certification are:

nn CPSA-F (Foundation Level) training and certification
nn At least 3 years’ professional experience in the IT sector
nn Active participation in the design and development of at least two different
IT systems
nn At least 70 credit points from all three competence areas (with a minimum
of 10 credit points for each)

The examination consists of solving a prescribed task and discussion of the
solution with two independent examiners.

For Foundation Level certification is based on knowledge and skills
defined in the iSAQB curriculum [isaqb-curriculum]. These are as follows:

nn The definition and importance of software architecture
nn The tasks and responsibilities of software architects
nn The role of the software architect within a project
nn State-of-the-art methods and techniques for the development of software
architectures

The focus is on the acquisition of the following skills:

nn Coordinating critical software architecture decisions with other parties
involved in requirements management, project management, testing, and
development
nn Documenting and communicating software architectures on the basis of
views, architectural patterns, and technical concepts
nn Understanding the main steps involved in the design of software archi-
tectures and performing them independently for small and medium-sized
systems

Foundation Level training provides the knowledge necessary for designing
and documenting a solution-based software architecture for small and medi-
um-sized systems, based on a sufficiently detailed requirements specification.
This architecture can then serve as a template for implementation. Partici-
pants are trained to make problem-oriented design decisions on the basis of
previous practical experience.

Figure 1-4 shows the content and weighting of the individual areas of
the curriculum for iSAQB Certified Professional for Software Architecture
(CPSA) Foundation Level training.

71.4  The aim of this book

Figure 1-4	 Structure of the iSAQB curriculum for the CPSA Foundation Level training

Various independent bodies offer certification based on the iSAQB curricu-
lum. Examiners use standardized questions prepared by the iSAQB.

Questions are multiple-choice, so the results are objectively measurable.
The examination validates your software architecture capabilities on

paper. It is up to you to prove yourself in real-world situations.

1.4	 The aim of this book

Members of the iSAQB developed this book during the creation of the Certi­
fied Professional for Software Architecture, Foundation Level curriculum.
The main aim of the book is to provide a concise summary of the knowl-
edge required to pass the CPSA Foundation Level examination, and thus the
basic knowledge required for the creation of successful software architec-
tures. This makes the book an ideal reference manual when preparing for the
examination. In addition to reading the book, we also strongly recommend
participation in the corresponding training courses, which offer practical
examples of software architectures and the personal experience of our train-
ing staff, both of which go beyond the scope of this book.

The book focuses primarily on methodical skills and knowledge, so spe-
cific implementation technologies and tools are not part of the standardized
training content. Specific notations and acronyms (such as UML) are to be
understood only as examples. The book does not describe individual, specific
procedure models or specific development processes, and instead provides
various examples.

1

2

3

4

5
6

Developement of
Software Architecture

Basic Terms of
Software Architecture

Examples of
Software Architecture

Tools for
Software Architects

Software Architecture
and Quality

Description and
Communication of
Software Architecture

8 1  Introduction

It explains important terms and concepts involved in software architec-
ture and their relationships with other disciplines. Building on this, it pro-
vides an introduction to the fundamental methods and techniques required
for design and development, description and communication, and quality
assurance in software architectures. It also addresses the roles, tasks, inter
actions, and work environment of software architects, and describes how
they integrate with company and project structures.

1.5	 Prerequisites

In line with the aims described above, the book and the iSAQB curriculum
assume you have previous experience in software development. The follow-
ing content is neither part of the book nor the curriculum, although it forms
an essential part of every software architect’s skill set:

nn Several years of practical experience in software development, gained by
programming differing projects or systems
nn Advanced knowledge of and practical experience with at least one high-
level programming language
nn Fundamentals of modeling, abstraction, and UML; in particular class,
package, component, and sequence diagrams and how they relate to source
code
nn Practical experience in technical documentation; in particular the docu-
mentation of source code, system designs, and technical concepts

Knowledge and experience of object orientation is also advantageous for an
understanding of some of the concepts involved. Experience in the design
and implementation of distributed applications (such as client-server systems
or web applications) is also desirable.

1.6	 Reader’s guide

The structure of this book is primarily oriented to the structure and content
of the iSAQB Foundation Level curriculum. For more details, see figure 1-4
and [isaqb-curriculum]:

nn In Chapter 2 we describe terms and software architecture basics, which
are then addressed in more detail in subsequent chapters. For example, the
concept of a software system “view” is introduced within the context of
software architecture.

91.7  Target audience

nn Practical software architecture design is addressed in Chapter 3. Top-
ics covered include variants of the architecture development procedure;
important architectural patterns such as views, pipes and filters, and model
view controllers; and design principles such as coupling, cohesion, and
separation of concerns.
nn Chapter 4 covers proven description tools and guidelines that enable you
to document your software architecture and communicate it to others.
This is oriented toward a specific target group. Topics covered include the
iSAQB view model and cross-cutting concerns in software architectures.
nn In Chapter 5 we take a look at the relationship between software archi-
tecture and quality issues. Important terms include quality, quality char-
acteristics, ATAM (Architecture Tradeoff Analysis Method), quality tree,
compromises (in the implementation of quality characteristics), qualitative
architecture evaluation, and the risks involved in achieving quality assur-
ance objectives.
nn Chapter 6 lists sample support tools for modeling, generating, and docu-
menting software architectures.
nn The appendices include sample questions, a glossary, and a list of reference
resources.

Chapters 2 to 5 are essential when preparing for the iSAQB examination,
and the other sections are useful too. For general reading, we recommend
that you thoroughly read Chapter 2 and then move on to the topics that
interest you most.

1.7	 Target audience

The primary target audience for this book is anyone who is preparing for
iSAQB certification and/or attending iSAQB training courses. The book is
also aimed at IT professionals and students who wish to familiarize them-
selves with the basic terms used in software architecture.

The book also provides an overview of software architecture for soft-
ware project managers, product managers, and decision makers at the inter-
mediate software development level.

10 1  Introduction

1.8	 Acknowledgements

We would like to take this opportunity to thank the iSAQB for its support,
and in particular our iSAQB reviewers of previous editions Andreas Roth-
mann, Phillip Ghadir, and Stefan Zörner. Many thanks to Roger E. Rhoades
for the review of the English text. We would also like to thank Ingrid
Schindler from the Chair for Software Systems Engineering at Clausthal
University of Technology, and the staff at ITech Progress, who provided
invaluable support in the preparation of the diagrams. In particular, Chris-
tine O’Brien and Robert Kerns have been very supportive in creating the
English edition of this book, thank you!

Our thanks also go to our editor Christa Preisendanz for her patience.
Finally, we particularly want to thank our families and partners who

gave us the time and space to work together on this book.

