
1﻿

1	 Introduction

Software systems are certainly among the most complex construc-
tions that human beings have ever conceived and built, so it’s not 
surprising that some software projects fail, and legacy systems often 
remain unmodified for fear they will simply stop working. In spite 
of this complexity, I still encounter project teams that are in control 
of their software systems, regardless of their industry, technology 
stack, size, or age. Adding functionality and fixing bugs in such leg-
acy systems involves much less effort than I would have imagined, 
and new employees can be trained with reasonable effort. What 
do these project teams do differently? “How do they manage their 
software so effectively in the long run?”

The main reasons for long-term success or failure in software 
development and maintenance can be found on many different lev-
els. These include the industry, the technology used, the quality of 
the software system, and the qualifications of the users and develop-
ers. This book focuses on the sustainability of software architecture. 
I will show you which factors are most important for maintaining 
and expanding a software architecture over many years without 
making significant changes to your staffing, budget, or delivery 
schedule. 

1.1	 Software Architecture

Computer science has not been able to commit itself to a single defi-
nition of software architecture. In fact, there are more than 50 dif-
ferent definitions, each highlighting specific aspects of architecture. 
In this book we will stick to two of the most prominent definitions:

Sustainability of software 

architectures

50 definitions



2 1  Introduction

Definition #1: 

“Software architecture is the structure of a software product. This includes 
elements, the externally visible properties of the elements, and the relation-
ships between the elements.” [Bass et al. 2012]

This definition deliberately talks about elements and relationships in 
very general terms. These two basic materials can be used to describe 
a wide variety of architecture views. The static (module) view con-
tains the following elements: classes, packages, namespaces, direc-
tories, and projects—in other words, all the containers you can use 
for programming code in that particular programming language. In 
the distribution view, the following elements can be found: archives 
(JARs, WARs, assemblies), computers, processes, communication 
protocols and channels, and so on. In the dynamic (runtime) view 
we are interested in the runtime objects and their interactions. In 
this book we will deal with the structures in the module (static)1 
view and show why some are more durable than others.

The second definition is one that is very close to my heart. It 
doesn’t define architecture by way of its structure, but rather the 
decisions made. 

Definition #2: 

“Software architecture = the sum of all important decisions 

Important decisions are all decisions that are difficult to change in the course 
of further development. “ [Kruchten 2004]

These two definitions are very different. The first defines what the 
structure of a software system consists of on an abstract level, 
whereas the second refers to decisions that the developers or archi-
tects make regarding the system as a whole. The second definition 
defines the space for all overarching aspects of architecture, such as 
technology selection, architectural style selection, integration, secu-
rity, performance, and much, much more. These aspects are just as 

1	 The structures of the module view usually also influence the distribution view. 
Section 7.2 contains a proposal for displaying the distribution view in the module 
view.

Architecture Views

Structure vs. decisions



31.2  Sustainability

1.2  Sustainability

important to an architecture as the chosen structure, but are not the 
subject of this book. 

This book deals with the decisions that influence the structure 
of a software system. Once a development team and its architects 
decide on the structure of a system, they have defined guardrails for 
the architecture. 

Guardrails for your architecture 

Create an architecture that restricts the design space during the develop-
ment of the software system and gives you direction in your work.

Guardrails allow developers and architects to orient themselves. 
The decisions are all channeled in a uniform direction and can be 
understood and traced, giving the software system a homogeneous 
structure. When solving maintenance tasks, guardrails guide all par-
ticipants in a uniform direction, and lead to faster and more consis-
tent results during adaptation or extension of the system. 

This book will answer questions regarding which guardrails lead 
to durable architectures and extend the life of a software system.

1.2	 Sustainability

Software that is only used for a short period of time shouldn’t have 
an architecture that is designed for sustainability. An example of 
such a piece of software is a program that migrates data from a 
legacy system into the database of a new application. This soft-
ware is used once and then hopefully discarded. We say “hopefully” 
because experience has shown that program parts that are no lon-
ger used can be still found in many software systems. They are not 
discarded because the developers assume that they might need them 
again later. Also, to delete lines of working code that were created 
with a lot of effort isn’t done lightly. There is hardly a developer or 
architect who likes to do this.2 

2	 In order to perceive discarding software as something positive, the clean code 
movement has introduced “Code Kata” workshops in which the same problem is 
solved several times and the code is discarded after each step. 

Decisions create 

guardrails 

Guardrails for 

development

Short-lived software 



4 1  Introduction

Most of the software we program today lives much longer than 
expected. It is often edited and adapted. In many cases software 
is used for many more years than anyone could have imagined at 
the coding stage. Think, for example, of the Cobol developers who 
wrote the first major Cobol systems for banks and insurance com-
panies in the 1960s and 1970s. Storage space was expensive at the 
time, so programmers thought hard about preserving storage space 
for every field saved on the database. For the Cobol developers at 
the time, it seemed a reasonable decision to implement years as two-
digit fields only. Nobody imagined back then that these Cobol pro-
grams would still exist in the year 2000. During the years prior to 
the turn of the millennium, a lot of effort had to be made to convert 
all the old programs to four-digit year fields. If the Cobol developers 
in the 1960s and 1970s had known that their software would be in 
service for such a long time, they would have used four-digit fields 
to represent years.

Such a long lifetime is still realistic for a large number of the 
software systems that we build today. Many companies shy away 
from investing in new development, which generates significant 
costs that are often higher than planned. The outcome of new devel-
opments is also unknown, and users too have to be taken into con-
sideration. In addition, the organization is slowed down during the 
development process and an investment backlog arises for urgently 
needed extensions. At the end of the day, it is better to stick with the 
software you have and expand it if necessary. Perhaps a new front 
end on top of an old server will suffice. 

This book is rooted in the expectation that an investment in 
software should pay for itself for as long as possible. New software 
should incur the lowest possible maintenance and expansion costs 
in the course of its lifetime—in other words, the technical debt must 
be kept as low as possible. 

The “Year 2000” problem 

Our software will get old

Old and cheap?



51.3  Technical Debt

1.3  Technical Debt

1.3	 Technical Debt 

The term “technical debt” is a metaphor coined by Ward Cunning-
ham in 1992 [Cunningham 1992]. Technical debt arises when false 
or suboptimal technical decisions are made, whether consciously 
or unconsciously. Such decisions lead to additional effort at a later 
point in time, which delays maintenance and expansion. 

If there are capable developers and architects on the team at the 
beginning of a software development project, they will contribute 
their best experience and accumulated design know-how to creating 
a long-lasting architecture with no technical debt. However, this 
goal cannot be ticked off at the beginning of the project according 
to the principle “First we will design a long-lasting architecture and 
everything else will be fine from then on.” 

In truth, you can only achieve a long-lasting architecture if you 
constantly keep an eye on technical debt. In figure 1-1 we see what 
happens when technical debt grows over time in comparison to 
what happens when it is reduced regularly.

Imagine a team that is continuously developing a system using releases 
or iterations: if the team focuses on quality it will knowingly pile on 
new technical debt with each add-on (the yellow arrows in fig. 1-1). 
During the development of an expansion, the team will already be 

Good intentions

A quality-oriented team 

amount of
technical dept

high dept

low dept

maintenance and change architecture
improvement

functionality
per time unit

low and stable
maintenance costs

high, non-predictable
maintenance costs

refactoring
architecture
erosion

Figure 1-1 

Technical debt and 

architectural erosion



6 1  Introduction

thinking about what needs to be done to improve the architecture. 
Meanwhile (or after the expansion), technical debt will be reduced 
again (indicated by the green arrows in fig. 1-1). A constant sequence 
of expansion and improvement occurs. If the team works this way, 
the system remains in a corridor of low technical debt with a pre-
dictable maintenance effort (see green bracket in fig. 1-1).

If the team doesn’t aim to constantly preserve the architecture, 
the architecture of the system is slowly lost, and maintainability 
deteriorates. Sooner or later, the software system leaves the corridor 
of minor technical debt (indicated by the ascending red arrows in 
fig. 1-1). 

The architecture erodes further and further. Maintenance and 
the extension of the software become increasingly expensive until 
you reach the point where every change becomes a painful effort. In 
figure 1-1 this case is made clear by the red arrows becoming shorter 
and shorter. As the erosion of the architecture increases, less and 
less functionality can be implemented, fewer bugs can be fixed, and 
fewer adaptations to other quality requirements can be achieved per 
unit of time. The development team becomes frustrated and demoti-
vated and sends desperate signals to the project’s management. Such 
warnings are usually registered far too late.

If you are on the path depicted by the ascending red arrows, the 
sustainability of your software system will continuously decrease. 
The software system becomes error-prone, the development team 
gets a reputation for being sluggish, and changes that used to be 
possible within two person-days now take up to twice or three times 
as long. All in all, everything happens much too slowly. In the IT 
industry, “slow” is a synonym for “too expensive”. That’s right, tech-
nical debt has accumulated and with every change you have to pay 
interest on the technical debt principal plus the cost of the expansion. 

The way out of this technical debt dilemma is to retroactively 
improve architectural quality. As a result, the system can be pulled 
back into the corridor of low technical debt step by step (see the 
red descending arrows in fig. 1-1). This path requires significant 
resources (both time and money) but still represents a reasonable 
investment in the future. After all, future maintenance will involve 
less effort and will be cheaper. For software systems that once had 
good architecture, this procedure usually leads to rapid success. 

A chaotic team 

Architectural erosion 

Too expensive!

Returning to good quality 



71.3  Technical Debt

The situation is completely different if the corridor of high tech-
nical debt is reached and the maintenance effort becomes dispro-
portionately high and unpredictable (see the red bracket in fig. 1-1). 
I am frequently asked what “disproportionately high maintenance” 
means. A general answer that is valid for all projects is of course 
difficult to provide. However, in various systems with good archi-
tecture I have noticed that for every 500,000 lines of code (LOC), 
one or two full-time developers are required for maintenance. In 
other words, 40-80 hours per week per 500,000 LOC is a good 
starting point for determining the time needed to fix bugs and make 
small adjustments. If new functionality is to be integrated into the 
system, you will of course require even more capacity.

When I visit a company to evaluate an architecture, the first 
question I ask is about the size of the system(s). Secondly, I ask 
about the size and efficiency of the development department. If 
the answer is, “We employ 30 developers for our Java system of 
3 million LOC, but they are all busy with maintenance and we can 
hardly get any new features implemented ...” I immediately assume 
that it is an indebted system. Naturally, setting such an expectation 
is harsh, but it has usually proved helpful as an initial hunch. 

If the system has too much debt to be maintainable and exten-
sible, companies often decide to replace the system with a new one 
(see the colored circle in fig. 1-1). In 2015, to my great delight, Peter 
Vogel described the typical lifecycle of a system with technical debt 
as a “CRAP cycle”. The acronym CRAP stands for C(reate) R(epair) 
A(bandon) (re)P(lace)3. If repairing a system seems fruitless or too 
expensive, the system is left to die and eventually replaced. 

However, this last step should be approached cautiously. As 
early as the beginning of the 2000s, many legacy systems written in 
COBOL and PL/1 were declared unmaintainable and replaced by 
Java systems. Everything was supposed to get better with this new 
programming language, and this promise was made to the manag-
ers who were tasked with funding the new implementation. Today, a 
number of these eagerly built Java systems are full of technical debt 
and generate immense maintenance costs. 

3	 https://visualstudiomagazine.com/articles/2015/07/01/domain-driven-design.aspx

The CRAP cycle 	



8 1  Introduction

In the course of my professional life to date, I have repeatedly 
encountered four major causes of technical debt: 

1.	No knowledge of software architecture

2.	Complexity and size of software systems

3.	Architectural erosion arises unnoticed 

4.	A lack of understanding of custom software development 
processes on the part of managers and customers 

These four factors usually occur in combination and often influence 
each other. 

1.3.1	 No Knowledge of Software Architecture 

When a development team starts a new project, I always try to 
include an experienced developer-architect in the team. Every devel-
oper can program, but knowledge of sustainable software architec-
ture only comes with experience.

If nobody in the team cares about sustainable architecture, the 
resulting system is likely to be maintenance-intensive. The architec-
ture of these systems evolves over a period without any planning. 
Each developer fulfills her own personal ideas on architecture and/
or design for her part of the software. “It’s a legacy system!” is often 
heard in the latter case.

In this case, technical debt is accumulated right from the begin-
ning of and increases continuously. The usual attitude to such soft-
ware systems is that they somehow grew up under a bad influence. 
Systems like this can often no longer be maintained after a relatively 
short period of time. I have even seen systems that have become 
unmaintainable after just three years. 

The architectural and design ideas of architects and developers 
must initially be questioned and their quality standardized in order 
to move these systems closer to the corridor of low technical debt 
using whatever possible means. Overall, this is much more complex 
than getting a system with previously good architecture back on 
track. However, large-scale quality refactoring can be broken down 
into manageable sub-steps. After some initial small improvements 
(quick wins) the quality gain becomes noticeable through faster 

Causes of technical debt 

Programming ≠ Software 

Architecture 

Unusable software 

Starting with 

technical debt 

Significant refactoring 



91.3  Technical Debt

maintenance. Such quality-improving work often costs less than a 
new implementation, even if many development teams understand-
ably enjoy new development projects much more. This positive atti-
tude to a new development project is often accompanied by under-
estimation of the complexity of the task. 

1.3.2	 Complexity and Size 

The complexity of a software system is fed by two different sources: 
the use case for which the software system was built and the solu-
tion (the program code, the database, and so on). 

An appropriate solution for the problem must be found within 
its specialized domain—a solution that allows the user to carry out 
the planned business processes using the software system. These 
factors are known as “problem-inherent” and “solution-dependent” 
complexity. The greater the complexity of the problem, the greater 
the solution-dependent complexity will be4.

This correlation is the reason why cost predictions and soft-
ware development duration are often estimated too low. The actual 
complexity of the problem cannot be determined at the beginning 
of the project, so the complexity of the solution is underestimated 
many times over5. 

This is where agile methods apply. Agile methods only estimate 
the functionality that is to be implemented up to the end of each 
iteration. The complexity of the problem and the resulting complex-
ity of the solution are rechecked time and again.

Not only the complexity inherent to the problem is difficult to 
determine. The solution, too, contributes to the complexity. Depend-
ing on the experience and methodical strength of the developers, the 
design and implementation of a problem will vary in complexity. 
Ideally, a solution will only be as complex as the problem. In this 
case, we can say that it is a good solution. 

If the solution is more complex than the actual problem, the 
solution is not a good one and a corresponding redesign is neces-
sary. The difference between better and worse is called the essential 

4	 see [Ebert 1995], [Glass 2002] and [Woodfield 1979]
5	 see [Booch 2004] and [McBride 2007]

Problem-inherent 

complexity 

Solution-dependent 

complexity 

Essential or accidental? 



10 1  Introduction

and accidental complexity. Table 1-1 summarizes the relationship 
between these four complexity terms.

Essential Accidental

Problem-inherent ■■ Complexity of the 
domain 

■■ Misunderstandings 
about the domain 

Solution-dependent ■■ Complexity of 
technology and 
architecture 

■■ Misunderstandings 
about technology 

■■ Superfluous solution 
elements 

Essential complexity is the kind of complexity that is inherent in 
the nature of a project. When analyzing the domain, developers try 
to identify the essential complexity of the problem. The essential 
complexity inherent to a domain leads to a correspondingly com-
plex solution and can never be resolved or avoided just by using a 
particularly good design. The essential complexity of the problem 
has thus become the essential complexity of the solution. 

In contrast, the term “accidental complexity” is used to refer to 
the elements of complexity that are not necessary and can there-
fore be eliminated or reduced. Accidental complexity can arise from 
misunderstandings during analysis of the domain as well as during 
implementation by the development team. 

If no simple solution is found during development due to incom-
prehension or lack of an overview, the software system is already 
unnecessarily complex. Examples of unnecessary complexity are 
multiple implementations, integration of unneeded functionality, and 
disregard of software design principles. However, developers some-
times risk additional accidental complexity if, for example, they want 
to try out new but unnecessary technology during development.

Even if a team manages to incorporate only essential complexity 
into its software, the immense number of elements involved makes 
software difficult to master. In my experience, an intelligent devel-
oper can retain an overview of about 30,000 lines of code and 
anticipate the effects of code changes in the other places. Software 
systems in productive use today tend to be considerably larger than 
this. We are more likely talking about a range of 200,000 to 100 
million lines of code. 

Essential = inevitable

Accidental = superfluous 

Software is complex 

Table 1-1 

Complexity



111.3  Technical Debt

All these arguments make it clear that developers require soft-
ware architecture that gives them the greatest possible overview. 
Only then can they navigate their way around the existing com-
plexity. If developers have an overview of the architecture, the 
probability of appropriate software changes being made increases. 
When they make changes, they can take all of the affected areas into 
account and leave the functionality of the unaltered lines of code 
untouched. Of course, additional techniques are very helpful, such 
as automated testing, high test coverage, architectural education/
training, and a supportive project and enterprise organization. 

1.3.3	 Architectural Erosion Takes Place Unnoticed 

Even with a capable development team, architectural erosion occurs 
unnoticed. How does this happen? Well, it’s often a long, drawn-
out process. During implementation, developers increasingly devi-
ate from the architecture. In some cases, they do this consciously 
because the planned architecture does not meet the increasingly evi-
dent requirements. The complexity of the problem and the solution 
were underestimated and demands changed within the architecture, 
but there is no time to consistently follow these changes through 
for the entire system. In other cases, time and cost issues arise and 
must be solved so quickly that there is no time to develop a suitable 
design and rethink the architecture. Some developers are not even 
aware of the planned architecture, so they unintentionally violate 
it. For example, relationships are built between components that 
disregard prescribed public interfaces or run contrary to the mod-
ularization and layering of the software system. By the time you 
notice this creeping decay, it is high time to intervene! 

Once you have reached the nadir of architectural erosion, every 
change becomes unbearable. No-one wants to continue working on 
such a system. In his article Design Principles and Design Pattern, 
Robert C. Martin summed up these symptoms of a rotten system 
[Martin 2000]: 

■■ Rigidity: The system is inflexible to modification. Each modifi-
cation leads to a cascade of further adjustments in dependent 
modules. Developers are often unaware of what is happening in 

Architecture reduces 

complexity

A drawn-out process 

Symptoms of severe 

architectural erosion 

Rigidity 



12 1  Introduction

the system and are uncomfortable with changes. What starts as a 
small adjustment or a small refactoring leads to an ever-increas-
ing marathon of repairs in ever more modules. The developers 
chase the effects of their modifications in the source code and 
hope to have reached the end of the chain with every new reali-
zation. 

■■ Fragility: Changes to the system result in errors that have no ob-
vious relationship to the modifications made. Each adjustment 
increases the probability of new subsequent errors in surprising 
locations. The fear of modification grows, and the impression is 
that the developers are no longer in control of the software. 

■■ Immobility: There are design and construction units that already 
solve a similar task as the one that is currently being implement-
ed. However, these solutions cannot be reused because there is 
too much “baggage” surrounding the unit in question. A generic 
implementation or separation is also not possible because recon-
structing the old units would be too complex and error-prone. 
Usually the required code is copied, as this requires less effort. 

■■ Viscosity: If developers need to make an adjustment, there are 
usually several options. Some of these options preserve the de-
sign, while others break it. If such “hacks” are easier to imple-
ment than the design-preserving solution, the system is described 
as viscous. 

Development teams must constantly fight these symptoms to keep 
their systems durable and make customizing and maintenance fun 
in the long run. If only the costs didn’t exist ...

1.3.4	 We Don’t Pay Extra For Quality!

Many customers are surprised when their service providers—either 
external or in-house—tell them that they need more money to 
improve the architecture and thus the quality of the software sys-
tem. Customers often say things like, “It already works! What do I 
gain if I spend money on quality?” or, “You got the contract because 
you promised you would deliver good quality. You can’t demand 
more money for quality now”. These are very unpleasant situations. 
As software developers and architects, our goal is to write software 

Fragility

Immobility 

Viscosity 

Architecture costs 

extra money



131.3  Technical Debt

with sustainable architecture and high quality. At this point, it is not 
easy to explain that an evolving architecture is an investment in the 
future and saves money in the long run. 

These situations often arise because the customer/management 
doesn’t realize (or doesn’t want to know) that custom software 
development is an unplannable process. If new, unprecedented soft-
ware is developed, the essential complexity is difficult to master. 
The software itself, its use, and its integration into the context of 
work organization and changing business processes are unpredict-
able. Possible extensions or new forms of use cannot be foreseen. 
These are essential characteristics of custom software development! 

Today, every software system is custom-developed software and 
integration into the customer’s IT landscape is different every time. 
The technological and economic developments are so rapid that a 
software architecture and the resulting system that represents the 
ideal solution for today will reach its limits by tomorrow. These 
constraints lead to the conclusion that software is not an indus-
trially manufactured product. Instead, it is a custom solution that 
makes sense at a given point in time, with an architecture that will 
hopefully endure for a long time but that must continue to evolve. 
This includes both functional and non-functional aspects, such as 
internal and external quality. 

Fortunately, increasing numbers of customers are beginning to 
understand the terms “technical debt” and “sustainability. 

1.3.5	 Types of Technical Debt 

Many types of technical debt and their variants are mentioned in 
discussions about technical debt. Four of these are relevant to this 
book:

■■ Implementation debt: The source code contains “code smells”, 
such as long methods, code duplicates, and similar.

■■ Design and architecture debt: The design of classes, packages, 
subsystems, layers, and modules is inconsistent or complex and 
does not fit the planned architecture. 

■■ Test debt: Tests are missing or only the positive case is tested. The 
test coverage with automated unit tests is low. 

Custom software 

development = 

unplannable 

Software ≠ industrially 

produced goods 

Code Smell

Structural Smell

Unit Tests



14 1  Introduction

■■ Documentation debt: There is no documentation, or the docu-
mentation that exists is incomplete or outdated. The overview 
of the architecture is not supported by the documents. Design 
decisions are not documented. 

Most of the hints, suggestions, and good and bad examples you 
will find in this book relate to the first two types of technical debt. 
You will see how such debt arises and how it can be reduced. 
However, this debt can only be reduced safely if the level of test 
debt is low or is reduced while you work. In this respect, low test 
debt is a basic requirement. On the one hand, documentation of 
the architecture is a good basis for the architectural analysis and 
improvements dealt with in this book (i.e., low documentation debt 
helps with the analysis). On the other hand, architectural analysis 
also produces documentation for the analyzed system, thus also 
reducing documentation debt. 

1.4	 The Systems I Have Seen 

After completing my computer science studies in 1995 I worked as 
a software developer, before moving on to software architecture, 
project management, and consultancy. Since 2002 I have often been 
invited to examine the quality of software systems. In the beginning 
I was only able to look at the source code, but this aspect has been 
tool-supported since 2004. Architectural analysis and improvement 
developed with thorough, tool-assisted checks of the source code 
according to certain criteria. In Chapters 2 and 4 you will see how 
analysis and improvement take place technically and organization-
ally. 

In the course of time, I have reviewed systems written in Java 
(130), C++ (30), C# (70), ABAP (5), PHP (20), and PLSQL (10). 
TypeScript and JavaScript will soon be added to this list. Each of 
these programming languages has its own peculiarities, as we will 
see in Chapter 3. The size of a system (see fig. 1-2) also influences 
how the software architecture is (or should be) designed. 

Documentation

Basic requirement: 

low test debt

Sizes and languages 



151.5  Who Is This Book For?

1.5  Who Is This Book 
For?

The “lines of code” (LOC) specification in figure 1-2 includes the 
lines of executable code, blank lines, and comments. If you exclude 
comments and blank lines, you need to subtract an average of 
50  per cent of the LOC. Typically, the ratio between executable 
and non-executable code is between 40 and 60 per cent, depending 
on whether the development team placed begin and end markers 
({}) on separate lines. The sizes of systems analyzed in this book 
are quoted for code written in Java/C#, C++, and PHP. These lan-
guages all have a similar “sentence length”. ABAP programming 
is much more wordy and generates two or three times as much 
source code.

All these analysis have sharpened and deepened my understand-
ing of software architecture and my expectations of how software 
systems should be built. 

1.5	 Who Is This Book For?

This book is written for architects and developers who work with 
source code on a daily basis. They will benefit most from this book 
because it points out potential problems in large and small systems 
as well as offering solutions. 

Consultants with development experience, practicing architects, 
and development teams who want to methodically improve exist-

Lines of code

Programming 

Improving existing 

systems

Figure 1-2 

Sizes of analyzed systems 

in lines of code (LOC)



16 1  Introduction

ing software solutions will find many references to large and small 
improvements in this book. 

Inexperienced developers will probably have trouble under-
standing the content in some places due to the complexity of the 
issues involved. However, they will still be able to learn the basics 
of how to build sustainable software architectures.

1.6	 How To Use This Book? 

The book consists of twelve chapters, some of which follow on 
from one another, but that can also be read separately. 

Figure 1-3 shows a schematic of the book’s chapters. The two 
white chapters provide the basic framework of introduction and 
summary. The turquoise chapters are the theoretical parts of the 
book, and the dark blue chapter deals with organizational aspects. 
The light blue chapters contain many small and large practical 
examples. 

Ideally, you will read the entire book from start to finish. How-
ever, if your time is limited, I recommend you read Chapters 1 and 2 
first to give you a good foundation. You can then skip to Chapters 5 
and/or 6 followed by Chapters 7, 8, 9, or 10. You can also jump 

Learning for the future

Main contents 

Different Paths 

Figure 1-3 

Structure of the book



171.6  How To Use This Book?

1.6  How To Use This 
Book?

directly from Chapter 2 to Chapters 4 or 8, and dive right into the 
procedure of architectural analysis or the case studies. 

Chapter 1 lays the foundation for understanding sustainable 
architectures and technical debt. Chapter 2 shows how to find and 
reduce technical debt in existing architectures. Chapter 3 explains 
the specialties of programming languages in architectural analy-
sis. Chapter 4 explains which roles in architectural analysis and 
improvement have to work together to achieve a valuable result, 
and how architectures can be compared using the Modularity 
Maturity Index (MMI). Chapter 5 deals with the question of how 
large structures must be designed so that people can quickly nav-
igate their way around them. Cognitive psychology gives us clues 
as to which specifications lead to architectures that can be quickly 
grasped and understood. Chapter 6 presents the architectural styles 
commonly used today. With their rules, they provide guardrails for 
software architectures. Chapters 7, 8, 9, and 10 describe the find-
ings from various practical, real-world analysis and consultations. 
Chapter  11 contains seven exemplary (anonymized) case studies 
that I find particularly interesting. To conclude, Chapter 12 con-
tains a brief summary of how architects, development teams, and 
management should proceed to improve the quality of their archi-
tecture. The appendix presents a range of analysis tools that I have 
enjoyed using in the course of my everyday work. 




