
CHAPTER 18

Using the Controller Chip Hardware

18.0 Introduction
The Arduino platform simplifies programming by providing easy-to-use function calls
to hide complex, low-level hardware functions. But some applications need to bypass
the friendly access functions to get directly at hardware, either because that’s the only
way to get the needed functionality or because higher performance is required. This
chapter shows how to access and use hardware functions that are not fully exposed
through the documented Arduino language.

Changing register values can change the behavior of some Arduino
functions (e.g., millis). The low-level capabilities described in this
chapter require care, attention, and testing if you want your code to
function correctly.

Registers
Registers are variables that refer to hardware memory locations. They are used by the
chip to configure hardware functions or for storing the results of hardware operations.
The contents of registers can be read and written by your sketch. Changing register
values will change the way the hardware operates, or the state of something (such as
the output of a pin). Some registers represent a numerical value (the number a timer
will count to). Registers can control or report on hardware status; for example, the state
of a pin or if an interrupt has occurred. Registers are referenced in code using their
names—these are documented in the data sheet for the microcontrollers. Setting a
register to a wrong value usually results in a sketch functioning incorrectly, so carefully
check the documentation to ensure that you are using registers correctly.

599

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

D3kjd3Di38lk323nnm

Interrupts
Interrupts are signals that enable the controller chip to stop the normal flow of a sketch
and handle a task that requires immediate attention before continuing with what it was
doing. Arduino core software uses interrupts to handle incoming data from the serial
port, to maintain the time for the delay and millis functions, and to trigger the
attachInterrupt function. Libraries, such as Wire and Servo, use interrupts when an
event occurs, so the code doesn’t have to constantly check to see if the event has hap-
pened. This constant checking, called polling, can complicate the logic of your sketch.
Interrupts can be a reliable way to detect signals of very short duration. Recipe 18.2
explains how to use interrupts to determine if a digital pin has changed state.

Two or more interrupts may occur before the handling of the first interrupt is comple-
ted; for example, if two switches are pressed at the same time and each generates a
different interrupt. The interrupt handler for the first switch must be completed before
the second interrupt can get started. Interrupts should be brief, because an interrupt
routine that takes too much time can cause other interrupt handlers to be delayed or
to miss events.

Arduino services one interrupt at a time. It suspends pending interrupts
while it deals with an interrupt that has happened. Code to handle in-
terrupts (called the interrupt handler, or interrupt service routine) should
be brief to prevent undue delays to pending interrupts. An interrupt
routine that takes too much time can cause other interrupt handlers to
miss events. Activities that take a relatively long time, such as blinking
an LED or even serial printing, should be avoided in an interrupt
handler.

Timers
A standard Arduino board has three hardware timers for managing time-based tasks
(the Mega has six). The timers are used in a number of Arduino functions:

Timer0
Used for millis and delay; also analogWrite on pins 5 and 6

Timer1
analogWrite functions on pins 9 and 10; also driving servos using the Servo library

Timer2
analogWrite functions on pins 3 and 11

The Servo library uses the same timer as analogWrite on pins 9 and 10,
so you can’t use analogWrite with these pins when using the Servo
library.

600 | Chapter 18: Using the Controller Chip Hardware

The Mega has three additional 16-bit timers and uses different pin numbers with
analogWrite:

Timer0
analogWrite functions on pins 4 and 13

Timer1
analogWrite functions on pins 11 and 12

Timer2
analogWrite functions on pins 9 and 10

Timer3
analogWrite functions on pins 2, 3, and 5

Timer4
analogWrite functions on pins 6, 7, and 8

Timer5
analogWrite functions on pins 45 and 46

Timers are counters that count pulses from a time source, called a timebase. The timer
hardware consists of 8-bit or 16-bit digital counters that can be programmed to deter-
mine the mode the timer uses to count. The most common mode is to count pulses
from the timebase on the Arduino board, usually 16 MHz derived from a crystal; 16
MHz pulses repeat every 62.5 nanoseconds, and this is too fast for many timing appli-
cations, so the timebase rate is reduced by a divider called a prescaler. Dividing the
timebase by 8, for example, increases the duration of each count to half a microsecond.
For applications in which this is still too fast, other prescale values can be used (see
Table 18-1).

Timer operation is controlled by values held in registers that can be read and written
by Arduino code. The values in these registers set the timer frequency (the number of
system timebase pulses between each count) and the method of counting (up, down,
up and down, or using an external signal).

Here is an overview of the timer registers (n is the timer number):

Timer Counter Control Register A (TCCRnA)
Determines the operating mode

Timer Counter Control Register B (TCCRnB)
Determines the prescale value

Timer Counter Register (TCNTn)
Contains the timer count

Output Compare Register A (OCRnA)
Interrupt can be triggered on this count

Output Compare Register B (OCRnB)
Interrupt can be triggered on this count

18.0 Introduction | 601

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

Timer/Counter Interrupt Mask Register (TIMSKn)
Sets the conditions for triggering an interrupt

Timer/Counter 0 Interrupt Flag Register (TIFRn)
Indicates if the trigger condition has occurred

Table 18-1 is an overview of the bit values used to set the timer precision. Details of
the functions of the registers are explained in the recipes where they are used.

Table 18-1. Timer prescale values (16 MHz clock)

Prescale factor CSx2, CSx1, CSx0 Precision Time to overflow

 8-bit timer 16-bit timer

1 B001 62.5 ns 16 µs 4.096 ms

8 B010 500 ns 128 µs 32.768 ms

64 B011 4 µs 1,024 µs 262.144 ms

256 B100 16 µs 4,096 µs 1048.576 ms

1,024 B101 64 µs 16,384 µs 4194.304 ms

 B110 External clock, falling edge

 B111 External clock, rising edge

All timers are initialized for a prescale of 64.

Precision in nanoseconds is equal to the CPU period (time for one CPU cycle) multiplied
by the prescale.

Analog and Digital Pins
Chapter 5 described the standard Arduino functions to read and write (to/from) digital
and analog pins. This chapter explains how you can control pins faster than using the
Arduino read and write functions and make changes to analog methods to improve
performance.

Some of the code in this chapter is more difficult to understand than the other recipes
in this book, as it is moving beyond Arduino syntax and closer to the underlying hard-
ware. These recipes work directly with the tersely named registers in the chip and use
bit shifting and masking to manipulate bits in them. The benefit from this complexity
is enhanced performance and functionality.

See Also
Overview of hardware resources: http://code.google.com/p/arduino/wiki/HardwareRe
sourceMap

Timer1 (and Timer3) library: http://www.arduino.cc/playground/Code/Timer1

Tutorial on timers and PWM: http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

602 | Chapter 18: Using the Controller Chip Hardware

http://code.google.com/p/arduino/wiki/HardwareResourceMap
http://code.google.com/p/arduino/wiki/HardwareResourceMap
http://www.arduino.cc/playground/Code/Timer1
http://arduino.cc/en/Tutorial/SecretsOfArduinoPWM

The Atmel ATmega 168/328 data sheets: http://www.atmel.com/dyn/resources/prod
_documents/doc8271.pdf

Atmel application note on how to set up and use timers: http://www.atmel.com/dyn/
resources/prod_documents/DOC2505.PDF

A thorough summary of information covering 8-bit timers: http://www.cs.mun.ca/~rod/
Winter2007/4723/notes/timer0/timer0.html

Diagrams showing register settings for timer modes: http://web.alfredstate.edu/wei
mandn/miscellaneous/atmega168_subsystem/atmega168_subsystem_index.html

Wikipedia article on interrupts: http://en.wikipedia.org/wiki/Interrupts

18.1 Storing Data in Permanent EEPROM Memory
Problem
You want to store values that will be retained even when power is switched off.

Solution
Use the EEPROM library to read and write values in EEPROM memory. This sketch
blinks an LED using values read from EEPROM and allows the values to be changed
using the Serial Monitor:

/*
 based on Blink without Delay
 uses EEPROM to store blink values
 */

#include <EEPROM.h>

// these values are saved in EEPROM
const byte EEPROM_ID = 0x99; // used to identify if valid data in EEPROM
byte ledPin = 13; // the number of the LED pin
int interval = 1000; // interval at which to blink (milliseconds)

// variables that do not need to be saved
int ledState = LOW; // ledState used to set the LED
long previousMillis = 0; // will store last time LED was updated

//constants used to identify EEPROM addresses
const int ID_ADDR = 0; // the EEPROM address used to store the ID
const int PIN_ADDR = 1; // the EEPROM address used to store the pin
const int INTERVAL_ADDR = 2; // the EEPROM address used to store the interval

void setup()
{
 Serial.begin(9600);
 byte id = EEPROM.read(ID_ADDR); // read the first byte from the EEPROM
 if(id == EEPROM_ID)

18.1 Storing Data in Permanent EEPROM Memory | 603

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8271.pdf
http://www.atmel.com/dyn/resources/prod_documents/DOC2505.PDF
http://www.atmel.com/dyn/resources/prod_documents/DOC2505.PDF
http://www.cs.mun.ca/~rod/Winter2007/4723/notes/timer0/timer0.html
http://www.cs.mun.ca/~rod/Winter2007/4723/notes/timer0/timer0.html
http://web.alfredstate.edu/weimandn/miscellaneous/atmega168_subsystem/atmega168_subsystem_index.html
http://web.alfredstate.edu/weimandn/miscellaneous/atmega168_subsystem/atmega168_subsystem_index.html
http://en.wikipedia.org/wiki/Interrupts

 {
 // here if the id value read matches the value saved when writing eeprom
 Serial.println("Using data from EEPROM");
 ledPin = EEPROM.read(PIN_ADDR);
 byte hiByte = EEPROM.read(INTERVAL_ADDR);
 byte lowByte = EEPROM.read(INTERVAL_ADDR+1);
 interval = word(hiByte, lowByte); // see word function in Recipe 3.15
 }
 else
 {
 // here if the ID is not found, so write the default data
 Serial.println("Writing default data to EEPROM");
 EEPROM.write(ID_ADDR,EEPROM_ID); // write the ID to indicate valid data
 EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom
 byte hiByte = highByte(interval);
 byte loByte = lowByte(interval);
 EEPROM.write(INTERVAL_ADDR, hiByte);
 EEPROM.write(INTERVAL_ADDR+1, loByte);

 }
 Serial.print("Setting pin to ");
 Serial.println(ledPin,DEC);
 Serial.print("Setting interval to ");
 Serial.println(interval);

 pinMode(ledPin, OUTPUT);
}

void loop()
{
 // this is the same code as the BlinkWithoutDelay example sketch
 if (millis() - previousMillis > interval)
 {
 previousMillis = millis(); // save the last time you blinked the LED
 // if the LED is off turn it on and vice versa:
 if (ledState == LOW)
 ledState = HIGH;
 else
 ledState = LOW;
 digitalWrite(ledPin, ledState); // set LED using value of ledState
 }
 processSerial();
}

// function to get duration or pin values from Serial Monitor
// value followed by i is interval, p is pin number
int value = 0;

void processSerial()
{
 if(Serial.available())
 {
 char ch = Serial.read();
 if(ch >= '0' && ch <= '9') // is this an ascii digit between 0 and 9?
 {

604 | Chapter 18: Using the Controller Chip Hardware

 value = (value * 10) + (ch - '0'); // yes, accumulate the value
 }
 else if (ch == 'i') // is this the interval
 {
 interval = value;
 Serial.print("Setting interval to ");
 Serial.println(interval);
 byte hiByte = highByte(interval);
 byte loByte = lowByte(interval);
 EEPROM.write(INTERVAL_ADDR, hiByte);
 EEPROM.write(INTERVAL_ADDR+1, loByte);
 value = 0; // reset to 0 ready for the next sequence of digits
 }
 else if (ch == 'p') // is this the pin number
 {
 ledPin = value;
 Serial.print("Setting pin to ");
 Serial.println(ledPin,DEC);
 pinMode(ledPin, OUTPUT);
 EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom
 value = 0; // reset to 0 ready for the next sequence of digits
 }
 }
}

Open the Serial Monitor. As the sketch starts, it tells you whether it is using values
previously saved to EEPROM or defaults, if this is the first time the sketch is started.

You can change values by typing a number followed by a letter to indicate the action.
A number followed by the letter i changes the blink interval; a number followed by a
p changes the pin number for the LED.

Discussion
Arduino contains EEPROM memory that will store values even when power is switched
off. There are 512 bytes of EEPROM in a standard Arduino board, 4K bytes in a Mega.

The sketch uses the EEPROM library to read and write values in EEPROM memory.

Once the library is included in the sketch, an EEPROM object is available that accesses
the memory. The library provides methods to read, write, and clear. EEPROM.clear()
is not used in this sketch because it erases all the EEPROM memory.

The EEPROM library requires you to specify the address in memory that you want to
read or write. This means you need to keep track of where each value is written so that
when you access the value it is from the correct address.

To write a value, you use EEPROM.write(address, value). The address is from 0 to 511
(on a standard Arduino board), and the value is a single byte.

To read, you use EEPROM.read(address). The byte content of that memory address is
returned.

18.1 Storing Data in Permanent EEPROM Memory | 605

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

The sketch stores three values in EEPROM. The first value stored is an ID value that is
used only in setup to identify if the EEPROM has been previously written with valid
data. If the value stored matches the expected value, the other variables are read from
EEPROM and used in the sketch. If it doesn’t match, this sketch has not been run on
this board (otherwise, the ID would have been written), so the default values are written,
including the ID value.

The sketch monitors the serial port, and new values received are written to EEPROM.

The sketch stores the ID value in EEPROM address 0, the pin number in address 1, and
the two bytes for the interval start in address 2. The following line writes the pin number
to EEPROM. The variable ledPin is a byte, so it fits into a single EEPROM address:

EEPROM.write(PIN_ADDR, ledPin); // save the pin in eeprom

Because interval is an int, it requires two bytes of memory to store the value:

byte hiByte = highByte(interval);
byte loByte = lowByte(interval);
EEPROM.write(INTERVAL_ADDR, hiByte);
EEPROM.write(INTERVAL_ADDR+1, loByte);

The preceding code splits the value into two bytes that are stored in two consecutive
addresses. Any additional variables to be added to EEPROM would need to be placed
in addresses that follow these two bytes.

Here is the code used to rebuild the int variable from EEPROM:

ledPin = EEPROM.read(PIN_ADDR);
byte hiByte = EEPROM.read(INTERVAL_ADDR);
byte lowByte = EEPROM.read(INTERVAL_ADDR+1);
interval = word(hiByte, lowByte);

See Chapter 3 for more on using the word expression to create an integer from two bytes.

For more complicated use of EEPROM, it is advisable to draw out a map of what is
being saved where, to ensure that no address is used by more than one value, and that
multibyte values don’t overwrite other information.

See Also
Recipe 3.14 provides more information on converting 16- and 32-bit values into bytes.

18.2 Using Hardware Interrupts
Problem
You want to perform some action when a digital pin changes value and you don’t want
to have to constantly check the pin state.

606 | Chapter 18: Using the Controller Chip Hardware

Solution
This sketch monitors pulses on pin 2 and stores the duration in an array. When the
array has been filled (64 pulses have been received), the duration of each pulse is dis-
played on the Serial Monitor:

/*
 Interrupts sketch
 see Recipe 10.1 for connection diagram
 */

const int irReceiverPin = 2; // pin the receiver is connected to
const int numberOfEntries = 64; // set this number to any convenient value

volatile unsigned long microseconds;
volatile byte index = 0;
volatile unsigned long results[numberOfEntries];

void setup()
{
 pinMode(irReceiverPin, INPUT);
 Serial.begin(9600);
 attachInterrupt(0, analyze, CHANGE); // encoder pin on interrupt 0 (pin 2);
 results[0]=0;
}

void loop()
{
 if(index >= numberOfEntries)
 {
 Serial.println("Durations in Microseconds are:") ;
 for(byte i=0; i < numberOfEntries; i++)
 {
 Serial.println(results[i]);
 }
 index = 0; // start analyzing again
 }
 delay(1000);
}

void analyze()
{
 if(index < numberOfEntries)
 {
 if(index > 0)
 {
 results[index] = micros() - microseconds;
 }
 index = index + 1;
 }
 microseconds = micros();
}

If you have an infrared receiver module, you can use the wiring in Recipe 10.1 to meas-
ure the pulse width from an infrared remote control. You could also use the wiring in

18.2 Using Hardware Interrupts | 607

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

Recipe 6.12 to measure pulses from a rotary encoder or connect a switch to pin 2 (see
Recipe 5.1) to test with a push button.

Discussion
In setup, the attachInterrupt(0, analyze, CHANGE); call enables the sketch to handle
interrupts. The first number in the call specifies which interrupt to initialize. On a
standard Arduino board, two interrupts are available: number 0, which uses pin 2, and
number 1 on pin 3. The Mega has four more: number 2, which uses pin 21, number 3
on pin 20, number 4 on pin 19, and number 5 on pin 18.

The next parameter specifies what function to call (sometimes called an interrupt han-
dler) when the interrupt event happens; analyze in this sketch.

The final parameter specifies what should trigger the interrupt. CHANGE means whenever
the pin level changes (goes from low to high, or high to low). The other options are:

LOW
When the pin is low

RISING
When the pin goes from low to high

FALLING
When the pin goes from high to low

When reading code that uses interrupts, bear in mind that it may not be obvious when
values in the sketch change because the sketch does not directly call the interrupt han-
dler; it’s called when the interrupt conditions occur.

In this sketch, the main loop checks the index variable to see if all the entries have been
set by the interrupt handler. Nothing in loop changes the value of index. index is
changed inside the analyze function when the interrupt condition occurs (pin 2 chang-
ing state). The index value is used to store the time since the last state change into the
next slot in the results array. The time is calculated by subtracting the last time the
state changed from the current time in microseconds. The current time is then saved
as the last time a change happened. (Chapter 12 describes this method for obtaining
elapsed time using the millis function; here micros is used to get elapsed microseconds
instead of milliseconds.)

The variables that are changed in an interrupt function are declared as volatile; this
lets the compiler know that the values could change at any time (by an interrupt han-
dler). Without using the volatile keyword, the compiler would may store the values
in registers that can be accidentally overwritten by an interrupt handler. To prevent
this, the volatile keyword tells the compiler to store the values in RAM rather than
registers.

Each time an interrupt is triggered, index is incremented and the current time is saved.
The time difference is calculated and saved in the array (except for the first time the

608 | Chapter 18: Using the Controller Chip Hardware

interrupt is triggered, when index is 0). When the maximum number of entries has
occurred, the inner block in loop runs, and it prints out all the values to the serial port.
The code stays in the while loop at the end of the inner block, so you need to reset the
board when you want to do another run.

See Also
Recipe 6.12 has an example of external interrupts used to detect movement in a rotary
encoder.

18.3 Setting Timer Duration
Problem
You want to do something at periodic intervals, and you don’t want to have your code
constantly checking if the interval has elapsed. You would like to have a simple interface
for setting the period.

Solution
The easiest way to use a timer is through a library. The following sketch uses the
MsTimer2 library (http://www.arduino.cc/playground/Main/MsTimer2) to generate a
pulse with a period that can be set using the Serial Monitor. This sketch flashes pin 13
at a rate that can be set using the Serial Monitor:

/*
 pulseTimer2
 pulse a pin at a rate set from serial input
 */

#include <MsTimer2.h>

const int pulsePin = 13;
const int NEWLINE = 10; // ASCII value for newline

int period = 100; // 10 milliseconds
boolean output = HIGH; // the state of the pulse pin

void setup()
{
 pinMode(pulsePin, OUTPUT);
 Serial.begin(9600);

 MsTimer2::set(period/2, flash);
 MsTimer2::start();

 period= 0; // reset to zero, ready for serial input
}

void loop()

18.3 Setting Timer Duration | 609

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://www.arduino.cc/playground/Main/MsTimer2

{
 if(Serial.available())
 {
 char ch = Serial.read();
 if(isDigit(ch)) // is this an ascii digit between 0 and 9?
 {
 period = (period * 10) + (ch - '0'); // yes, accumulate the value
 }
 else if (ch == NEWLINE) // is the character the newline character
 {
 Serial.println(period);
 MsTimer2::set(period/2, flash);
 MsTimer2::start();
 period = 0; // reset to 0, ready for the next sequence of digits
 }
 }
}

void flash()
{
 digitalWrite(pulsePin, output);
 output = !output; // invert the output
}

Run this with the Serial Monitor drop-down for appending a newline character at the
end of every send (see “Discussion” on page 15).

Discussion
Enter digits for the desired period in milliseconds using the Serial Monitor. The sketch
accumulates the digits and divides the received value by 2 to calculate the duration of
the on and off states (the period is the sum of the on time and off time, so the smallest
value you can use is 2). Bear in mind that an LED flashing very quickly may not appear
to be flashing to the human eye.

This library uses Timer2, so it will prevent operation of analogWrite on
pins 3 and 11.

This library enables you to use Timer2 by providing the timing interval and the name
of the function to call when the interval has elapsed:

MsTimer2::set(period/2, flash);

This sets up the timer. The first parameter is the time for the timer to run in milliseconds.
The second parameter is the function to call when the timer gets to the end of that time
(the function is named flash in this recipe):

MsTimer2::start();

610 | Chapter 18: Using the Controller Chip Hardware

As the name implies, start starts the timer running. Another method, named stop,
stops the timer.

As in Recipe 18.2, the sketch code does not directly call the function to perform the
action. The LED is turned on and off in the flash function that is called by MsTimer2
each time it gets to the end of its time setting. The code in loop deals with any serial
messages and changes the timer settings based on it.

Using a library to control timers is much easier than accessing the registers directly.
Here is an overview of the inner workings of this library: Timers work by constantly
counting to a value, signaling that they have reached the value, then starting again.
Each timer has a prescaler that determines the counting frequency. The prescaler divides
the system timebase by a factor such as 1, 8, 64, 256, or 1,024. The lower the prescale
factor, the higher the counting frequency and the quicker the timebase reaches its
maximum count. The combination of how fast to count, and what value to count to,
gives the time for the timer. Timer2 is an 8-bit timer; this means it can count up to 255
before starting again from 0. (Timer1 and Timers 3, 4, and 5 on the Mega use 16 bits
and can count up to 65,535.)

The MsTimer2 library uses a prescale factor of 64. On a 16 MHz Arduino board, each
CPU cycle is 62.5 nanoseconds long, and when this is divided by the prescale factor of
64, each count of the timer will be 4,000 nanoseconds (62.5 * 64 = 4,000, which is four
microseconds).

Remember that when you directly use a timer in your sketch, built-in
functions that use that timer, such as analogWrite, may no longer work
correctly.

See Also
An easy-to-use library for interfacing with Timer2: http://www.arduino.cc/playground/
Main/MsTimer2

A collection of routines for interfacing with Timer1 (also Timer3 on the Mega): http://
www.arduino.cc/playground/Code/Timer1

18.4 Setting Timer Pulse Width and Duration
Problem
You want Arduino to generate pulses with a duration and width that you specify.

18.4 Setting Timer Pulse Width and Duration | 611

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://www.arduino.cc/playground/Main/MsTimer2
http://www.arduino.cc/playground/Main/MsTimer2
http://www.arduino.cc/playground/Code/Timer1
http://www.arduino.cc/playground/Code/Timer1

Solution
This sketch generates pulses within the frequency range of 1 MHz to 1 Hz using Timer1
PWM on pin 9:

#include <TimerOne.h>

#define pwmRegister OCR1A // the logical pin, can be set to OCR1B
const int outPin = 9; // the physical pin

long period = 10000; // the period in microseconds
long pulseWidth = 1000; // width of a pulse in microseconds

int prescale[] = {0,1,8,64,256,1024}; // the range of prescale values

void setup()
{
 Serial.begin(9600);
 pinMode(outPin, OUTPUT);
 Timer1.initialize(period); // initialize timer1, 1000 microseconds
 setPulseWidth(pulseWidth);
}

void loop()
{
}

bool setPulseWidth(long microseconds)
{
 bool ret = false;

 int prescaleValue = prescale[Timer1.clockSelectBits];
 // calculate time per counter tick in nanoseconds
 long precision = (F_CPU / 128000) * prescaleValue ;
 period = precision * ICR1 / 1000; // period in microseconds
 if(microseconds < period)
 {
 int duty = map(microseconds, 0,period, 0,1024);
 if(duty < 1)
 duty = 1;
 if(microseconds > 0 && duty < RESOLUTION)
 {
 Timer1.pwm(outPin, duty);
 ret = true;
 }
 }
 return ret;
}

612 | Chapter 18: Using the Controller Chip Hardware

Discussion
You set the pulse period to a value from 1 to 1 million microseconds by setting the
value of the period at the top of the sketch. You can set the pulse width to any value in
microseconds that is less than the period by setting the value of pulseWidth.

The sketch uses the Timer1 library from http://www.arduino.cc/playground/Code/Tim
er1.

Timer1 is a 16-bit timer (it counts from 0 to 65,535). It’s the same timer used by
analogWrite to control pins 9 and 10 (so you can’t use this library and analogWrite on
those pins at the same time). The sketch generates a pulse on pin 9 with a period and
pulse width given by the values of the variables named period and pulseWidth. If you
want to use pin 10 instead of pin 9, you can make the following change:

#define pwmRegister OCR1B // the logical pin
const int outPin = 10; // the physical pin - OCRIB is pin 10

OCR1A and OCR1B are constants that are defined in the code included by the Arduino core
software (OCR stands for Output Compare Register). Many different hardware regis-
ters in the Arduino hardware are not usually needed by a sketch (the friendly Arduino
commands hide the actual register names). But when you need to access the hardware
directly to get at functionality not provided by Arduino commands, these registers need
to be accessed. Full details on the registers are in the Atmel data sheet for the chip.

The sketch in this recipe’s Solution uses the following registers:

ICR1 (Input Compare Register for Timer1) determines the period of the pulse. This
register contains a 16-bit value that is used as the maximum count for the timer. When
the timer count reaches this value it will be reset and start counting again from 0. In
the sketch in this recipe’s Solution, if each count takes 1 microsecond and the ICR1
value is set to 1000, the duration of each count cycle is 1,000 microseconds.

OCR1A (or OCR1B depending on which pin you want to use) is the Output Compare
Register for Timer1. When the timer count reaches this value (and the timer is in PWM
mode as it is here), the output pin will be set low—this determines the pulse width.
For example, if each count takes one microsecond and the ICR1 value is set to 1000 and
OCR1A is set to 100, the output pin will be HIGH for 100 microseconds and LOW for 900
microseconds (the total period is 1,000 microseconds).

The duration of each count is determined by the Arduino controller timebase
frequency (typically 16 MHz) and the prescale value. The prescale is the value that the
timebase is divided by. For example, with a prescale of 64, the timebase will be four
microseconds.

The Timer1 library has many useful capabilities—see the Playground article for details
—but it does not provide for the setting of a specific pulse width. This functionality is
added by the function named setPulseWidth.

This function uses a value of ICR1 to determine the period:

18.4 Setting Timer Pulse Width and Duration | 613

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://www.arduino.cc/playground/Code/Timer1
http://www.arduino.cc/playground/Code/Timer1
http://www.arduino.cc/playground/Code/Timer1

 int prescaleValue = prescale[Timer1.clockSelectBits];

The prescale value is set by a variable in the library named clockSelectBits. This vari-
able contains a value between 1 and 7—this is used as an index into the prescale array
to get the current prescale factor.

The duration for each count (precision) is calculated by multiplying the prescale value
by the duration of a timebase cycle:

// time per counter tick in ns
long precision = (F_CPU / 128000) * prescaleValue ;

The period is the precision times the value of the ICR1 register; it’s divided by 1,000 to
give the duration in microseconds:

 period = precision * ICR1 / 1000; // period in microseconds

The Timer1 library has a function named pwm that expects the duty cycle to be entered
as a ratio expressed by a value from 1 to 1,023 (where 1 is the shortest pulse and 1,023
is the longest). This value is calculated using the Arduino map function to scale the
microseconds given for the period into a proportional value of the period that ranges
from 1 to 1,023:

int duty = map(microseconds, 0,period, 1,1023);

See Also
See “See Also” on page 602 for links to data sheets and other references for timers.

18.5 Creating a Pulse Generator
Problem
You want to generate pulses from Arduino and control the characteristics from the
Serial Monitor.

Solution
This is an enhanced version of Recipe 18.4 that enables the frequency, period, pulse
width, and duty cycle to be set from the serial port:

#include <TimerOne.h>

const char SET_PERIOD_HEADER = 'p';
const char SET_FREQUENCY_HEADER = 'f';
const char SET_PULSE_WIDTH_HEADER = 'w';
const char SET_DUTY_CYCLE_HEADER = 'c';

#define pwmRegister OCR1A // the logical pin, can be set to OCR1B
const int outPin = 9; // the physical pin

614 | Chapter 18: Using the Controller Chip Hardware

long period = 1000; // the period in microseconds
int duty = 512; // duty as a range from 0 to 1024, 512 is 50% duty cycle

int prescale[] = {0,1,8,64,256,1024}; // the range of prescale values

void setup()
{
 Serial.begin(9600);
 pinMode(outPin, OUTPUT);
 Timer1.initialize(period); // initialize timer1, 1000 microseconds
 Timer1.pwm(9, duty); // setup pwm on pin 9, 50% duty cycle
}

void loop()
{
 processSerial();
}

void processSerial()
{
 static long val = 0;

 if (Serial.available())
 {
 char ch = Serial.read();

 if(ch >= '0' && ch <= '9') // is ch a number?
 {
 val = val * 10 + ch - '0'; // yes, accumulate the value
 }
 else if(ch == SET_PERIOD_HEADER)
 {
 period = val;
 Serial.print("Setting period to ");
 Serial.println(period);
 Timer1.setPeriod(period);
 Timer1.setPwmDuty(outPin, duty); // don't change the duty cycle
 show();
 val = 0;
 }
 else if(ch == SET_FREQUENCY_HEADER)
 {
 if(val > 0)
 {
 Serial.print("Setting frequency to ");
 Serial.println(val);
 period = 1000000 / val;
 Timer1.setPeriod(period);
 Timer1.setPwmDuty(outPin, duty); // don't change the duty cycle
 }
 show();
 val = 0;
 }
 else if(ch == SET_PULSE_WIDTH_HEADER)

18.5 Creating a Pulse Generator | 615

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

 {
 if(setPulseWidth(val)) {
 Serial.print("Setting Pulse width to ");
 Serial.println(val);
 }
 else
 Serial.println("Pulse width too long for current period");
 show();
 val = 0;
 }
 else if(ch == SET_DUTY_CYCLE_HEADER)
 {
 if(val >0 && val < 100)
 {
 Serial.print("Setting Duty Cycle to ");
 Serial.println(val);
 duty = map(val,1,99, 1, ICR1);
 pwmRegister = duty;
 show();
 }
 val = 0;
 }
 }
}

bool setPulseWidth(long microseconds)
{
 bool ret = false;

 int prescaleValue = prescale[Timer1.clockSelectBits];
 // calculate time per tick in ns
 long precision = (F_CPU / 128000) * prescaleValue ;
 period = precision * ICR1 / 1000; // period in microseconds
 if(microseconds < period)
 {
 duty = map(microseconds, 0,period, 0,1024);
 if(duty < 1)
 duty = 1;
 if(microseconds > 0 && duty < RESOLUTION)
 {
 Timer1.pwm(outPin, duty);
 ret = true;
 }
 }
 return ret;
}

void show()
{
 Serial.print("The period is ");
 Serial.println(period);
 Serial.print("Duty cycle is ");
 // pwmRegister is ICR1A or ICR1B

616 | Chapter 18: Using the Controller Chip Hardware

 Serial.print(map(pwmRegister, 0,ICR1, 1,99));
 Serial.println("%");
 Serial.println();
}

Discussion
This sketch is based on Recipe 18.4, with the addition of serial code to interpret com-
mands to receive and set the frequency, period, pulse width, and duty cycle percent.
Chapter 4 explains the technique used to accumulate the variable val that is then used
for the desired parameter, based on the command letter.

You can add this function if you want to print instructions to the serial port:

void instructions()
{
 Serial.println("Send values followed by one of the following tags:");
 Serial.println(" p - sets period in microseconds");
 Serial.println(" f - sets frequency in Hz");
 Serial.println(" w - sets pulse width in microseconds");
 Serial.println(" c - sets duty cycle in %");
 Serial.println("\n(duty cycle can have one decimal place)\n");
}

See Also
Recipe 18.4

See “See Also” on page 602 for links to data sheets and other references for timers.

18.6 Changing a Timer’s PWM Frequency
Problem
You need to increase or decrease the Pulse Width Modulation (PWM) frequency used
with analogWrite (see Chapter 7). For example, you are using analogWrite to control a
motor speed and there is an audible hum because the PWM frequency is too high, or
you are multiplexing LEDs and the light is uneven because PWM frequency is too low.

Solution
You can adjust the PWM frequency by changing a register value. The register values
and associated frequencies are shown in Table 18-2.

Table 18-2. Adjustment values for PWM

Timer0 (pins 5 and 6)

TCCR0B value
Prescale factor
(divisor) Frequency

32 (1) 1 62500

18.6 Changing a Timer’s PWM Frequency | 617

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

Timer0 (pins 5 and 6)

TCCR0B value
Prescale factor
(divisor) Frequency

33 (2) 8 7812.5

34 64 976.5625

35 256 244.140625

36 1,024 61.03515625

Timer1 (pins 9 and 10)

TCCR1B prescale
value

Prescale factor
(divisor) Frequency

1 1 312500

2 8 3906.25

3 64 488.28125

4 256 122.0703125

5 1,024 30.517578125

Timer2 (pins 11 and 3)

TCCR2B value
Prescale factor
(divisor) Frequency

1 1 312500

2 8 3906.25

3 64 488.28125

4 256 122.0703125

5 1,024 30.517578125

All frequencies are in hertz and assume a 16 MHz system timebase. The default prescale
factor of 64 is shown in bold.

This sketch enables you to select a timer frequency from the Serial Monitor. Enter a
digit from 1 to 7 using the value in the lefthand column of Table 18-2 and follow this
with character a for Timer0, b for Timer1, and c for Timer2:

const byte mask = B11111000; // mask bits that are not prescale values
int prescale = 0;

void setup()
{
 Serial.begin(9600);
 analogWrite(3,128);
 analogWrite(5,128);
 analogWrite(6,128);
 analogWrite(9,128);
 analogWrite(10,128);
 analogWrite(11,128);

618 | Chapter 18: Using the Controller Chip Hardware

}

void loop()
{
 if (Serial.available())
 {
 char ch = Serial.read();
 if(ch >= '0' && ch <= '9') // is ch a number?
 {
 prescale = ch - '0';
 }
 else if(ch == 'a') // timer 0;
 {
 TCCR0B = (TCCR0B & mask) | prescale;
 }
 else if(ch == 'b') // timer 1;
 {
 TCCR1B = (TCCR1B & mask) | prescale;
 }
 else if(ch == 'c') // timer 2;
 {
 TCCR2B = (TCCR2B & mask) | prescale;
 }
 }
}

Avoid changing the frequency of Timer0 (used for analogWrite pins 5
and 6) because it will result in incorrect timing using delay and millis.

Discussion
If you just have LEDs connected to the analog pins in this sketch, you will not see any
noticeable change to the brightness as you change the PWM speed. You are changing
the speed as they are turning on and off, not the ratio of the on/off time. If this is unclear,
see the introduction to Chapter 7 for more on PWM.

You change the PWM frequency of a timer by setting the TCCRnB register, where n is the
register number. On a Mega board you also have TCCR3B, TCCR4B, and TCCR5B for timers
3 through 5.

All analog output (PWM) pins on a timer use the same frequency, so
changing timer frequency will affect all output pins for that timer.

See Also
See “See Also” on page 602 for links to data sheets and other references for timers.

18.6 Changing a Timer’s PWM Frequency | 619

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

18.7 Counting Pulses
Problem
You want to count the number of pulses occurring on a pin. You want this count to be
done completely in hardware without any software processing time being consumed.

Solution
Use the pulse counter built into the Timer1 hardware:

/*
 * HardwareCounting sketch
 *
 * uses pin 5 on 168/328
 */

const int hardwareCounterPin = 5; // input pin fixed to internal Timer
const int ledPin = 13;

const int samplePeriod = 1000; // the sample period in milliseconds
unsigned int count;

void setup()
{
 Serial.begin(9600);
 pinMode(ledPin,OUTPUT);
 // hardware counter setup (see ATmega data sheet for details)
 TCCR1A=0; // reset timer/counter control register A
}

void loop()
{
 digitalWrite(ledPin, LOW);
 delay(samplePeriod);
 digitalWrite(ledPin, HIGH);
 // start the counting
 bitSet(TCCR1B ,CS12); // Counter Clock source is external pin
 bitSet(TCCR1B ,CS11); // Clock on rising edge
 delay(samplePeriod);
 // stop the counting
 TCCR1B = 0;
 count = TCNT1;
 TCNT1 = 0; // reset the hardware counter
 if(count > 0)
 Serial.println(count);
}

Discussion
You can test this sketch by connecting the serial receive pin (pin 0) to the input pin (pin
5 on a standard Arduino board). Each character sent should show an increase in the

620 | Chapter 18: Using the Controller Chip Hardware

count—the specific increase depends on the number of pulses needed to represent the
ASCII value of the characters (bear in mind that serial characters are sandwiched be-
tween start and stop pulses). Some interesting character patterns are:

'u' = 01010101
'3' = 00110011
'~' = 01111110
'@' = 01000000

If you have two Arduino boards, you can run one of the pulse generator sketches from
previous recipes in this chapter and connect the pulse output (pin 9) to the input. The
pulse generator also uses Timer1 (the only 16 bit timer on a standard Arduino board),
so you can combine the functionality using a single board.

Hardware pulse counting uses a pin that is internally wired within the
hardware and cannot be changed. Use pin 5 on a standard Arduino
board. The Mega uses Timer5 that is on pin 47; change TCCR1A to
TCCR5A and TCCR1B to TCCR5B,

The Timer’s TCCR1B register controls the counting behavior, setting it so 0 stops count-
ing. The values used in the loop code enable count in the rising edge of pulses on the
input pin. TCNT1 is the Timer1 register declared in the Arduino core code that accumu-
lates the count value.

In loop, the current count is printed once per second. If no pulses are detected on
pin 5, the values will be 0.

See Also
The FrequencyCounter library using the method discussed in this recipe: http://inter
face.khm.de/index.php/lab/experiments/arduino-frequency-counter-library/

See “See Also” on page 602 for links to data sheets and other references for timers.

18.8 Measuring Pulses More Accurately
Problem
You want to measure the period between pulses or the duration of the on or off time
of a pulse. You need this as accurate as possible, so you don’t want any delay due to
calling an interrupt handler (as in Recipe 18.2), as this will affect the measurements.

Solution
Use the hardware pulse measuring capability built in to the Timer1 hardware:

/*
 * InputCapture

18.8 Measuring Pulses More Accurately | 621

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://interface.khm.de/index.php/lab/experiments/arduino-frequency-counter-library/
http://interface.khm.de/index.php/lab/experiments/arduino-frequency-counter-library/

 * uses timer hardware to measure pulses on pin 8 on 168/328
 */

/* some interesting ASCII bit patterns:
 u 01010101
 3 00110011
 ~ 01111110
 @ 01000000
 */

const int inputCapturePin = 8; // input pin fixed to internal Timer
const int ledPin = 13;

const int prescale = 8; // prescale factor (each tick 0.5 us @16MHz)
const byte prescaleBits = B010; // see Table 18-1 or data sheet
// calculate time per counter tick in ns
const long precision = (1000000/(F_CPU/1000)) * prescale ;

const int numberOfEntries = 64; // the max number of pulses to measure
const int gateSamplePeriod = 1000; // the sample period in milliseconds

volatile byte index = 0; // index to the stored readings
volatile byte gate = 0; // 0 disables capture, 1 enables
volatile unsigned int results[numberOfEntries]; // note this is 16 bit value

/* ICR interrupt vector */
ISR(TIMER1_CAPT_vect)
{
 TCNT1 = 0; // reset the counter
 if(gate)
 {
 if(index != 0 || bitRead(TCCR1B ,ICES1) == true) // wait for rising edge
 { // falling edge was detected
 if(index < numberOfEntries)
 {
 results[index] = ICR1; // save the input capture value
 index++;
 }
 }
 }
 TCCR1B ^= _BV(ICES1); // toggle bit to trigger on the other edge
}

void setup() {
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(inputCapturePin, INPUT); // ICP pin (digital pin 8 on Arduino) as input

 TCCR1A = 0 ; // Normal counting mode
 TCCR1B = prescaleBits ; // set prescale bits
 TCCR1B |= _BV(ICES1); // enable input capture

 bitSet(TIMSK1,ICIE1); // enable input capture interrupt for timer 1

622 | Chapter 18: Using the Controller Chip Hardware

 Serial.println("pulses are sampled while LED is lit");
 Serial.print(precision); // report duration of each tick in microseconds
 Serial.println(" microseconds per tick");

}

// this loop prints the number of pulses in the last second, showing min
// and max pulse widths
void loop()
{
 digitalWrite(ledPin, LOW);
 delay(gateSamplePeriod);
 digitalWrite(ledPin, HIGH);
 gate = 1; // enable sampling
 delay(gateSamplePeriod);
 gate = 0; // disable sampling
 if(index > 0)
 {
 Serial.println("Durations in Microseconds are:") ;
 for(byte i=0; i < numberOfEntries; i++)
 {
 long duration;
 duration = results[i] * precision; // pulse duration in nanoseconds
 if(duration >0)
 Serial.println(duration / 1000); // duration in microseconds
 }
 index = 0;
 }
}

Discussion
This sketch uses a timer facility called Input Capture to measure the duration of a pulse.
Only 16-bit timers support this capability and this only works with pin 8 on a standard
Arduino board.

Input Capture uses a pin that is internally wired within the hardware
and cannot be changed. Use pin 8 on a standard Arduino board and pin
48 on a Mega (using Timer5 instead of Timer1).

Because Input Capture is implemented entirely in the controller chip hardware, no time
is wasted in interrupt handling, so this technique is more accurate for very short pulses
(less than tens of microseconds).

The sketch uses a gate variable that enables measurements (when nonzero) every other
second. The LED is illuminated to indicate that measurement is active. The input cap-
ture interrupt handler stores the pulse durations for up to 64 pulse transitions.

The edge that triggers the timer measurement is determined by the ICES1 bit of the
TCCR1B timer register. The line:

18.8 Measuring Pulses More Accurately | 623

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

 TCCR1B ^= _BV(ICES1);

toggles the edge that triggers the handler so that the duration of both high and low
pulses is measured.

If the count goes higher than the maximum value for the timer, you can monitor over-
flow to increment a variable to extend the counting range. The following code incre-
ments a variable named overflow each time the counter overflows:

volatile int overflows = 0;

/* Overflow interrupt vector */
ISR(TIMER1_OVF_vect) // here if no input pulse detected
{
 overflows++; // increment overflow count
}

Change the code in setup as follows:

 TIMSK1 = _BV(ICIE1); // enable input capture interrupt for timer 1
 TIMSK1 |= _BV(TOIE1); // Add this line to enable overflow interrupt

See Also
See “See Also” on page 602 for links to data sheets and other references for timers.

18.9 Measuring Analog Values Quickly
Problem
You want to read an analog value as quickly as possible without decreasing the
accuracy.

Solution
You can increase the analogRead sampling rate by changing register values that deter-
mine the sampling frequency:

const int sensorPin = 0; // pin the receiver is connected to
const int numberOfEntries = 100;

unsigned long microseconds;
unsigned long duration;

int results[numberOfEntries];

void setup()
{
 Serial.begin(9600);

 // standard analogRead performance (prescale = 128)
 microseconds = micros();
 for(int i = 0; i < numberOfEntries; i++)

624 | Chapter 18: Using the Controller Chip Hardware

 {
 results[i] = analogRead(sensorPin);
 }
 duration = micros() - microseconds;
 Serial.print(numberOfEntries);
 Serial.print(" readings took ");
 Serial.println(duration);

 // running with high speed clock (set prescale to 16)
 bitClear(ADCSRA,ADPS0) ;
 bitClear(ADCSRA,ADPS1) ;
 bitSet(ADCSRA,ADPS2) ;
 microseconds = micros();
 for(int i = 0; i < numberOfEntries; i++)
 {
 results[i] = analogRead(sensorPin);
 }
 duration = micros() - microseconds;
 Serial.print(numberOfEntries);
 Serial.print(" readings took ");
 Serial.println(duration);
}

void loop()
{
}

Running the sketch on a 16 MHz Arduino will produce output similar to the following:

100 readings took 11308
100 readings took 1704

Discussion
analogRead takes around 110 microseconds to complete a reading. This may not be fast
enough for rapidly changing values, such as capturing the higher range of audio fre-
quencies. The sketch measures the time in microseconds for the standard analogRead
and then adjusts the timebase used by the analog-to-digital converter (ADC) to perform
the conversion faster. With a 16 MHz board, the timebase rate is increased from
125 kHz to 1 MHz. The actual performance improvement is slightly less than eight
times because there is some overhead in the Arduino analogRead function that is not
improved by the timebase change. The reduction of time from 113 microseconds to 17
microseconds is a significant improvement.

The ADCSRA register is used to configure the ADC, and the bits set in the sketch
(ADPS0, ADPS1, and ADPS2) set the ADC clock divisor to 16.

See Also
Atmel has an application note that provides a detailed explanation of performance
aspects of the ADC: http://www.atmel.com/dyn/resources/prod_documents/DOC2559
.PDF.

18.9 Measuring Analog Values Quickly | 625

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://www.atmel.com/dyn/resources/prod_documents/DOC2559.PDF
http://www.atmel.com/dyn/resources/prod_documents/DOC2559.PDF

18.10 Reducing Battery Drain
Problem
You want to reduce the power used by your application by shutting down Arduino
until a period of time has elapsed or until an external event takes place.

Solution
This Solution uses a library by Arduino guru Peter Knight. You can download the library
from http://code.google.com/p/narcoleptic/:

#include <Narcoleptic.h>

void setup() {
 pinMode(2,INPUT);
 digitalWrite(2,HIGH);
 pinMode(13,OUTPUT);
 digitalWrite(13,LOW);
}

void loop() {
 int a;

 // Merlin the cat is snoozing... Connect digital pin 2 to ground to wake him up.
 Narcoleptic.delay(500); // During this time power consumption is minimized

 while (digitalRead(2) == LOW) {
 // Wake up CPU. Unfortunately, Merlin does not like waking up.

 // Swipe claws left
 digitalWrite(13,HIGH);
 delay(50);

 // Swipe claws right
 digitalWrite(13,LOW);
 delay(50);
 }

 // Merlin the cat goes to sleep...
}

Discussion
A standard Arduino board would run down a 9-volt alkaline battery in a few weeks
(the Duemilanove typically draws more than 25 milliamperes [mA], excluding any ex-
ternal devices that may be connected). You can reduce this consumption by half if you
use a board that does not have a built-in USB interface chip, such as the Arduino Mini,
LilyPad, Fio, or one of the Modern Device Bare Bones Boards that require the use of
an external USB interface for uploading sketches. Significantly greater power savings
can be achieved if your application can suspend operation for a period of time—

626 | Chapter 18: Using the Controller Chip Hardware

http://code.google.com/p/narcoleptic/

Arduino hardware can be put to sleep for a preset period of time or until a pin changes
state, and this reduces the power consumption of the chip to less than one one-
hundredth of 1 percent (from around 15 mA to around 0.001 mA) during sleep.

The library used in this recipe provides easy access to the hardware sleep function. The
sleep time can range from 16 to 8,000 milliseconds (eight seconds). To sleep for longer
periods, you can repeat the delay intervals until you get the period you want:

void longDelay(long milliseconds)
{
 while(milliseconds > 0)
 {
 if(milliseconds > 8000)
 {
 milliseconds -= 8000;
 Narcoleptic.delay(8000);
 }
 else
 {
 Narcoleptic.delay(milliseconds);
 break;
 }

 }
}

Sleep mode can reduce the power consumption of the controller chip, but if you are
looking to run for as long as possible on a battery, you should minimize current drain
through external components such as inefficient voltage regulators, pull-up or pull-
down resistors, LEDs, and other components that draw current when the chip is in
sleep mode.

See Also
See the Arduino hardware page for links to information on the LilyPad and Fio boards:
http://www.arduino.cc/en/Main/Hardware.

For an example of very low power operation, see http://interface.khm.de/index.php/lab/
experiments/sleep_watchdog_battery/.

18.11 Setting Digital Pins Quickly
Problem
You need to set or clear digital pins much faster than enabled by the Arduino digital
Write command.

18.11 Setting Digital Pins Quickly | 627

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

http://www.arduino.cc/en/Main/Hardware
http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/
http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/

Solution
Arduino digitalWrite provides a safe and easy-to-use method of setting and clearing
pins, but it is more than 30 times slower than directly accessing the controller hardware.
You can set and clear pins by directly setting bits on the hardware registers that are
controlling digital pins.

This sketch uses direct hardware I/O to send Morse code (the word arduino) to an AM
radio tuned to approximately 1 MHz. The technique used here is 30 times faster than
Arduino digitalWrite:

/*
 * Morse sketch
 *
 * Direct port I/O used to send AM radio carrier at 1MHz
 */

const int sendPin = 2;

const byte WPM = 12; // sending speed in words per minute
const long repeatCount = 1200000 / WPM; // count determines dot/dash duration
const byte dot = 1;
const byte dash = 3;
const byte gap = 3;
const byte wordGap = 7;
byte letter = 0; // the letter to send

char *arduino = ".- .-. -.. ..- .. -. ---";

void setup()
{
 pinMode(sendPin, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 sendMorse(arduino);
 delay(2000);
}

void sendMorse(char * string)
{
 letter = 0 ;
 while(string[letter]!= 0)
 {
 if(string[letter] == '.')
 {
 sendDot();
 }
 else if(string[letter] == '-')
 {

628 | Chapter 18: Using the Controller Chip Hardware

 sendDash();
 }
 else if(string[letter] == ' ')
 {
 sendGap();
 }
 else if(string[letter] == 0)
 {
 sendWordGap();
 }
 letter = letter+1;
 }
}

void sendDot()
{
 transmitCarrier(dot * repeatCount);
 sendGap();
}

void sendDash()
{
 transmitCarrier(dash * repeatCount);
 sendGap();
}

void sendGap()
{
 transmitNoCarrier(gap * repeatCount);
}

void sendWordGap()
{
 transmitNoCarrier(wordGap * repeatCount);
}

void transmitCarrier(long count)
{
 while(count--)
 {
 bitSet(PORTD, sendPin);
 bitSet(PORTD, sendPin);
 bitSet(PORTD, sendPin);
 bitSet(PORTD, sendPin);
 bitClear(PORTD, sendPin);
 }
}

void transmitNoCarrier(long count)
{
 while(count--)
 {
 bitClear(PORTD, sendPin);
 bitClear(PORTD, sendPin);

18.11 Setting Digital Pins Quickly | 629

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

 bitClear(PORTD, sendPin);
 bitClear(PORTD, sendPin);
 bitClear(PORTD, sendPin);
 }
}

Connect one end of a piece of wire to pin 2 and place the other end near the antenna
of a medium wave AM radio tuned to 1 MHz (1,000 kHz).

Discussion
The sketch generates a 1 MHz signal to produce dot and dash sounds that can be
received by an AM radio tuned to this frequency. The frequency is determined by the
duration of the bitSet and bitClear commands that set the pin HIGH and LOW to generate
the radio signal. bitSet and bitClear are not functions, they are macros. Macros sub-
stitute an expression for executable code—in this case, code that changes a single bit
in register PORTD given by the value of sendPin.

Digital pins 0 through 7 are controlled by the register named PORTD. Each bit in PORTD
corresponds to a digital pin. Pins 8 through 13 are on register PORTB, and pins 14 through
19 are on PORTA. The sketch uses the bitSet and bitClear commands to set and clear
bits on the port (see Recipe 3.12). Each register supports up to eight bits (although not
all bits correspond to Arduino pins). If you want to use Arduino pin 13 instead of pin
2, you need to set and clear PORTB as follows:

const int sendPin = 13;

bitSet(PORTB, sendPin - 8);
bitClear(PORTB, sendPin - 8);

You subtract 8 from the value of the pin because bit 0 of the PORTB register is pin 8, bit
1 is pin 9, and so on, to bit 5 controlling pin 13.

Setting and clearing bits using bitSet is done in a single instruction of the Arduino
controller. On a 16 MHz Arduino, that is 62.5 nanoseconds. This is around 30 times
faster than using digitalWrite.

The transmit functions in the sketch actually need more time updating and checking
the count variable than it takes to set and clear the register bits, which is why the
transmitCarrier function has four bitSet commands and only one bitClear
command—the additional bitClear commands are not needed because of the time it
takes to update and check the count variable.

18.12 Uploading Sketches Using a Programmer
Problem
You want to upload sketches using a programmer instead of the bootloader. Perhaps
you want the shortest upload time, or you don’t have a serial connection to your com-

630 | Chapter 18: Using the Controller Chip Hardware

puter suitable for bootloading, or you want to use the space normally reserved for the
bootloader to increase the program memory available to your sketch.

Solution
Connect an external in-system programmer (ISP) to the Arduino programming ICSP
(In-Circuit Serial Programming) connector. Programmers intended for use with Ardu-
ino have a 6-pin cable that attaches to the 6-pin ICSP connector as shown in Figure 18-1.

Ensure that pin 1 from the programmer (usually marked with different color than the
other wires) is connected to pin 1 on the ICSP connector. The programmer may have
a switch or jumper to enable it to power the Arduino board; read the instructions for
your programmer to ensure that the Arduino is powered correctly.

Figure 18-1. Connecting a programmer to Arduino

Select your programmer from the Tools menu. (AVRISP, AVRISPII, USBtinyISP, Par-
allel programmer, or Arduino as ISP) and double check that you have the correct Ar-
duino board selected. From the File menu, select Upload Using Programmer to perform
the upload.

Discussion
There are a number of different programmers available, from expensive devices aimed
at professional developers that offer various debugging options, to low-cost self-build
kits, or programming an additional Arduino to perform this function. The programmer
may be a native USB device, or appear as a serial port. Check the documentation for
your device to see what kind it is, and whether you need to install drivers for it.

The serial Rx and Tx LEDs on the Arduino will not flicker during upload
because the programmer is not using the hardware serial port.

18.12 Uploading Sketches Using a Programmer | 631

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

Uploading using a programmer removes the bootloader code from the chip. This frees
up the space the bootloader occupies and gives a little more room for your sketch code.

See Also
Code to convert an Arduino into an ISP programmer can be found in the sketch example
named ArduinoISP. The comments in the sketch describe the connections to use.

See Recipe 18.13.

Suitable hardware programmers include:

• USBtinyISP

• Atmel avrisp2

• CrispAVR_USB STK500

18.13 Replacing the Arduino Bootloader
Problem
You want to replace the bootloader. Perhaps you can’t get the board to upload programs
and suspect the bootloader is not working. Or you want to replace an old bootloader
with one with higher performance or different features.

Solution
Connect a programmer and select it as discussed in Recipe 18.12. Double check you
have the correct board selected and click “Burn Bootloader” from the Tools menu.

A message will appear in the IDE saying “Burning bootloader to I/O board (this may
take a minute)…” Programmers with status lights should indicate that the bootloader
is being written to the board. You should see the LED connected to pin 13 flash as the
board is programmed (pin 13 happens to be connected to one of the ICSP signal pins).
If all goes well, you should get a message saying “Done Loading Bootloader.”

Disconnect the programmer and try uploading code through the IDE to verify it is
working.

Discussion
The bootloader is a small program that runs on the chip and briefly checks each time
the chip powers up to see if the IDE is trying upload code to the board. If so, the
bootloader takes over and replaces the code on the chip with new code being uploaded
through the serial port. If the bootloader does not detect a request to upload, it relin-
quishes control to the sketch code already on the board.

If you have used a serial programmer, you will need to switch the serial port back to
the correct one for your Arduino board as described in Recipe 1.4.

632 | Chapter 18: Using the Controller Chip Hardware

http://www.ladyada.net/make/usbtinyisp/
http://parts.digikey.com/1/parts/408608-programmer-avr-system-atavrisp2.html
http://shop.chip45.com/epages/es10644620.sf/en_US/?ObjectPath=/Shops/es10644620/Products/CrispAVR-USB

See Also
Optiloader, maintained by Bill Westfield, is another way to update or install the boot-
loader. It uses an Arduino connected as an ISP programmer, but all the bootloaders are
included in the Arduino sketch code. This means an Arduino with Optiloader can
program another chip automatically when power is applied—no external computer
needed. The code identifies the chip and loads the correct bootloader onto it.

18.14 Reprogram the Uno to Emulate a Native USB device
Problem
You want your Arduino Uno to appear like a native USB device instead of as a serial
port, for example as a MIDI USB device to communicate directly with music programs
on your computer.

Solution
Replace the code running on the Uno USB controller (ATmega8U2) chip so that it
communicates with the computer as a native USB device rather than a serial port.

If the reprogramming is not done carefully, or a different firmware is
used that does not include the DFU firmware, you can get the board
into a state where you will need an external programmer to fix it using
a command-line utility named avrdude. If you are not familiar with run-
ning command-line tools, you should think carefully before trying out
this recipe.

Start by programing the Uno board with the sketch that will be talking to the 8U2, as
once you have reprogrammed the 8U2 it will be more difficult to change the sketch.
Darran Hunt has written suitable code for this that you can download from: http://hunt
.net.nz/users/darran/weblog/52882/attachments/1baa3/midi_usb_demo.pde (at the time
of writing, this sketch used the old .pde extension but it is compatible with
Arduino 1.0). Upload this to the Uno from the IDE in the usual way. This sketch will
send commands to the 8U2 that will tell it what MIDI messages to send back to the
computer.

Download the code to reprogram the 8U2 chip from http://hunt.net.nz/users/darran/
weblog/52882/attachments/e780e/Arduino-usbmidi-0.2.hex.

You will also need programming software that can talk to the 8U2 chip:

On Windows
Install the Atmel Flip program: http://www.atmel.com/dyn/products/tools_card.asp
?tool_id=3886.

18.14 Reprogram the Uno to Emulate a Native USB device | 633

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

https://github.com/WestfW/OptiLoader
http://hunt.net.nz/users/darran/weblog/52882/attachments/1baa3/midi_usb_demo.pde
http://hunt.net.nz/users/darran/weblog/52882/attachments/1baa3/midi_usb_demo.pde
http://hunt.net.nz/users/darran/weblog/52882/attachments/e780e/Arduino-usbmidi-0.2.hex
http://hunt.net.nz/users/darran/weblog/52882/attachments/e780e/Arduino-usbmidi-0.2.hex
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886

Mac
Install the command line tool dfu-programmer. A handy install script for installing
is here: http://www.uriahbaalke.com/?p=106.

Linux
From terminal, type: sudo apt-get install dfu-programme or sudo aptitude
install dfu-programmer depending on your distribution.

Set the 8U2 into its reprogram mode: if your Uno has the 6-pin connector by the 8U2
chip populated with pins, then you just need to short the lefthand pair of pins (closest
to the USB connector) together to put the chip in DFU mode.

The first Uno boards (revision 1) did not have a resistor needed to reset
the 8U2. If you are unable to reset your board, follow the instructions
at http://arduino.cc/en/Hacking/DFUProgramming8U2. Halfway down
the page it describes what to do if your board needs to have an external
resistor added to enable resetting the 8U2 chip.

On Windows
When the board is put into DFU mode for the first time, the Found New Hardware
Wizard will appear. If the board installs without error then carry on. If the hardware
installation fails (in the same way the Uno installation does) then you need to go
into Device Manager and highlight the entry for Arduino DFU (it will have a yellow
warning triangle next to it), right-click, and select update drivers. Navigate to the
Flip 3.4.3 folder in Program Files/Atmel and select the USB folder. The drivers
should now successfully install.

Launch the Flip program.

Select the device type AT90USB82 from the drop-down menu (it is the only active
option when you first run the program). Click on the icon of a lead and select USB.
If you get the error message AtLibUsbDfu.dll not found, the drivers have not in-
stalled. Follow the instructions above.

Click on the Select EEPROM button at the bottom of the window and open Ardu
ino-usbmidi-0.2.hex. Select Run to the left of this button, and the program should
go through the cycle listed above the button: Erase, Program, Verify. Unplug the
board and plug it back in and it will show up as a MIDI device on your computer.

Mac and Linux
In terminal, cd into the folder with the hex file.

Clear the chip by typing sudo dfu-programmer at90usb82 erase.

When this has finished, type
sudo dfu-ptogrammer at90usb82 flash Arduino-usbmidi-0.2.hex.

Unplug the board and plug it back in to get the new firmware to run in the 8U2.

634 | Chapter 18: Using the Controller Chip Hardware

http://www.uriahbaalke.com/?p=106
http://arduino.cc/en/Hacking/DFUProgramming8U2

The operating system should now recognize the device as a MIDI device. Hook it up
to a music program and you should hear a string of notes.

Discussion
Once the 8U2 is reprogrammed, the messages that are sent to the computer are still
controlled by the sketch running on the main chip, but your computer sees the Arduino
board as a MIDI device instead of a serial port. The sketch running on the main chip
determines what gets sent to your computer, allowing Arduino to respond to switches
and sensors to control what is played.

The IDE will not see the standard bootloader when the 8U2 has been reprogrammed
as described in this Recipe, so to change the sketch you use an external programmer
(see Recipe 18.12).

If you want to return your 8U2 to its original state, you can obtain the required .HEX
file at https://github.com/arduino/Arduino/tree/master/hardware/arduino/firmwares.
Put this on the 8U2 using the procedure described above, but use this hex file instead
of the MIDI one.

If you have used other firmware that does not include the DFU loader (not all firmware
found on the internet include it), or something has gone wrong and the board will not
go into DFU mode, then you need to use an external programmer to replace the
firmware.

This needs to be done from the command line using the upload utility named AVR-
dude (it cannot be done using the Arduino IDE).

In order for the following command to work, you need to supply the
full path to avrdude, not just the name. avrdude is located inside your
Arduino program folder: Arduino.app/Contents/Resources/Java/hard-
ware/tools/avr/bin on a Mac; hardware/tools/avr/bin inside the Arduino
folder on Windows. (Or you can add this location to your PATH envi-
ronment; Google “set path environment” for your operating system for
details.)

At the command line from the folder where the hex file is located, execute the following
command:

For the Uno
avrdude -p at90usb82 -F -P usb -c avrispmkii -U flash:w:UNO-dfu_and_usbse
rial_combined.hex -U lfuse:w:0xFF:m -U hfuse:w:0xD9:m -U efuse:w:0xF4:m -U
lock:w:0x0F:m

18.14 Reprogram the Uno to Emulate a Native USB device | 635

Michael Margolis, Arduino Kochbuch, O´Reilly, ISBN 978-3-86899-353-0

https://github.com/arduino/Arduino/tree/master/hardware/arduino/firmwares

For the Mega 2560
avrdude -p at90usb82 -F -P usb -c avrispmkii -U flash:w:MEGA-dfu_and_usbse
rial_combined.hex -U lfuse:w:0xFF:m -U hfuse:w:0xD9:m -U efuse:w:0xF4:m -U
lock:w:0x0F:m

If your programming device is a serial device rather than USB you will need to change
-P usb to specify which serial port (e.g., -P \\.\COM19 on Windows; -P /dev/
tty.usbserial-XXXXXX on Mac (check the Arduino serial port menu for the name it
appears as, and what values XXXXXX are). Set the -c avrispmkii based on the type of
programmer you have. For more details on this, see Recipe 18.12.

See Also
See Recipe 18.12.

Darran Hunt’s ATmega8U2 blog: http://hunt.net.nz/users/darran/

Updating the Atmega8U2 on an Uno or Mega2560 using DFU: http://arduino.cc/en/
Hacking/DFUProgramming8U2

The Teensy and Teensy++ boards can emulate USB HID devices: http://www.pjrc.com/
teensy/.

The Arduino Leonardo board supports emulation of USB HID devices. Leonardo had
not been released when this book was printed; check the Arduino hardware page to
see if it is available: http://www.arduinocc/en/Main/hardware.

See Recipe 9.6 for the conventional way to control MIDI from Arduino.

A tutorial covering the low-level avrdude programming tool: http://www.ladyada.net/
make/usbtinyisp/avrdude.html

636 | Chapter 18: Using the Controller Chip Hardware

http://hunt.net.nz/users/darran/
http://arduino.cc/en/Hacking/DFUProgramming8U2
http://arduino.cc/en/Hacking/DFUProgramming8U2
http://www.pjrc.com/teensy/
http://www.pjrc.com/teensy/
http://www.arduinocc/en/Main/hardware
http://www.ladyada.net/make/usbtinyisp/avrdude.html
http://www.ladyada.net/make/usbtinyisp/avrdude.html

	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What Was Left Out
	Code Style (About the Code)
	Arduino Platform Release Notes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Notes on the Second Edition

	Chapter 1. Getting Started
	1.0 Introduction
	Arduino Software
	Arduino Hardware
	See Also

	1.1 Installing the Integrated Development Environment (IDE)
	Problem
	Solution
	Discussion
	See Also

	1.2 Setting Up the Arduino Board
	Problem
	Solution
	Discussion
	See Also

	1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch
	Problem
	Solution
	Discussion
	See Also

	1.4 Uploading and Running the Blink Sketch
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating and Saving a Sketch
	Problem
	Solution
	Discussion
	See Also

	1.6 Using Arduino
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Making the Sketch Do Your Bidding
	2.0 Introduction
	2.1 Structuring an Arduino Program
	Problem
	Solution
	Discussion
	See Also

	2.2 Using Simple Primitive Types (Variables)
	Problem
	Solution
	Discussion
	See Also

	2.3 Using Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.4 Working with Groups of Values
	Problem
	Solution
	Discussion
	See Also

	2.5 Using Arduino String Functionality
	Problem
	Solution
	Discussion
	Choosing between Arduino Strings and C character arrays

	See Also

	2.6 Using C Character Strings
	Problem
	Solution
	Discussion
	See Also

	2.7 Splitting Comma-Separated Text into Groups
	Problem
	Solution
	Discussion
	See Also

	2.8 Converting a Number to a String
	Problem
	Solution
	Discussion

	2.9 Converting a String to a Number
	Problem
	Solution
	Discussion
	See Also

	2.10 Structuring Your Code into Functional Blocks
	Problem
	Solution
	Discussion
	See Also

	2.11 Returning More Than One Value from a Function
	Problem
	Solution
	Discussion

	2.12 Taking Actions Based on Conditions
	Problem
	Solution
	Discussion
	See Also

	2.13 Repeating a Sequence of Statements
	Problem
	Solution
	Discussion
	See Also

	2.14 Repeating Statements with a Counter
	Problem
	Solution
	Discussion
	See Also

	2.15 Breaking Out of Loops
	Problem
	Solution
	Discussion
	See Also

	2.16 Taking a Variety of Actions Based on a Single Variable
	Problem
	Solution
	Discussion
	See Also

	2.17 Comparing Character and Numeric Values
	Problem
	Solution
	Discussion
	See Also

	2.18 Comparing Strings
	Problem
	Solution
	Discussion
	See Also

	2.19 Performing Logical Comparisons
	Problem
	Solution
	Discussion

	2.20 Performing Bitwise Operations
	Problem
	Solution
	Discussion
	See Also

	2.21 Combining Operations and Assignment
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Using Mathematical Operators
	3.0 Introduction
	3.1 Adding, Subtracting, Multiplying, and Dividing
	Problem
	Solution
	Discussion
	See Also

	3.2 Incrementing and Decrementing Values
	Problem
	Solution
	Discussion
	See Also

	3.3 Finding the Remainder After Dividing Two Values
	Problem
	Solution
	Discussion
	See Also

	3.4 Determining the Absolute Value
	Problem
	Solution
	Discussion
	See Also

	3.5 Constraining a Number to a Range of Values
	Problem
	Solution
	Discussion
	See Also

	3.6 Finding the Minimum or Maximum of Some Values
	Problem
	Solution
	Discussion
	See Also

	3.7 Raising a Number to a Power
	Problem
	Solution
	Discussion

	3.8 Taking the Square Root
	Problem
	Solution
	Discussion

	3.9 Rounding Floating-Point Numbers Up and Down
	Problem
	Solution
	Discussion

	3.10 Using Trigonometric Functions
	Problem
	Solution
	Discussion
	See Also

	3.11 Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	3.12 Setting and Reading Bits
	Problem
	Solution
	Discussion
	See Also

	3.13 Shifting Bits
	Problem
	Solution
	Discussion
	See Also

	3.14 Extracting High and Low Bytes in an int or long
	Problem
	Solution
	Discussion
	See Also

	3.15 Forming an int or long from High and Low Bytes
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Serial Communications
	4.0 Introduction
	Serial Hardware
	Software Serial
	Serial Message Protocol
	New in Arduino 1.0
	See Also

	4.1 Sending Debug Information from Arduino to Your Computer
	Problem
	Solution
	Discussion
	See Also

	4.2 Sending Formatted Text and Numeric Data from Arduino
	Problem
	Solution
	Discussion
	See Also

	4.3 Receiving Serial Data in Arduino
	Problem
	Solution
	Discussion
	See Also

	4.4 Sending Multiple Text Fields from Arduino in a Single Message
	Problem
	Solution
	Discussion
	See Also

	4.5 Receiving Multiple Text Fields in a Single Message in Arduino
	Problem
	Solution
	Discussion
	See Also

	4.6 Sending Binary Data from Arduino
	Problem
	Solution
	Discussion
	See Also

	4.7 Receiving Binary Data from Arduino on a Computer
	Problem
	Solution
	Discussion
	See Also

	4.8 Sending Binary Values from Processing to Arduino
	Problem
	Solution
	Discussion

	4.9 Sending the Value of Multiple Arduino Pins
	Problem
	Solution
	Discussion
	See Also

	4.10 How to Move the Mouse Cursor on a PC or Mac
	Problem
	Solution
	Discussion
	See Also

	4.11 Controlling Google Earth Using Arduino
	Problem
	Solution
	Discussion
	See Also

	4.12 Logging Arduino Data to a File on Your Computer
	Problem
	Solution
	Discussion
	See Also

	4.13 Sending Data to Two Serial Devices at the Same Time
	Problem
	Solution
	Discussion
	See Also

	4.14 Receiving Serial Data from Two Devices at the Same Time
	Problem
	Solution
	Discussion
	Receiving data from multiple SoftwareSerial ports

	4.15 Setting Up Processing on Your Computer to Send and Receive Serial Data
	Problem
	Solution

	Chapter 5. Simple Digital and Analog Input
	5.0 Introduction
	5.1 Using a Switch
	Problem
	Solution
	Discussion
	See Also

	5.2 Using a Switch Without External Resistors
	Problem
	Solution
	Discussion

	5.3 Reliably Detecting the Closing of a Switch
	Problem
	Solution
	Discussion
	See Also

	5.4 Determining How Long a Switch Is Pressed
	Problem
	Solution
	Discussion

	5.5 Reading a Keypad
	Problem
	Solution
	Discussion
	See Also

	5.6 Reading Analog Values
	Problem
	Solution
	Discussion
	See Also

	5.7 Changing the Range of Values
	Problem
	Solution
	Discussion
	See Also

	5.8 Reading More Than Six Analog Inputs
	Problem
	Solution
	Discussion
	See Also

	5.9 Displaying Voltages Up to 5V
	Problem
	Solution
	Discussion

	5.10 Responding to Changes in Voltage
	Problem
	Solution
	Discussion

	5.11 Measuring Voltages More Than 5V (Voltage Dividers)
	Problem
	Solution
	Discussion

	Chapter 6. Getting Input from Sensors
	6.0 Introduction
	See Also

	6.1 Detecting Movement
	Problem
	Solution
	Discussion
	See Also

	6.2 Detecting Light
	Problem
	Solution
	Discussion
	See Also

	6.3 Detecting Motion (Integrating Passive Infrared Detectors)
	Problem
	Solution
	Discussion

	6.4 Measuring Distance
	Problem
	Solution
	Discussion
	See Also

	6.5 Measuring Distance Accurately
	Problem
	Solution
	Discussion
	See Also

	6.6 Detecting Vibration
	Problem
	Solution
	Discussion

	6.7 Detecting Sound
	Problem
	Solution
	Discussion

	6.8 Measuring Temperature
	Problem
	Solution
	Discussion
	See Also

	6.9 Reading RFID Tags
	Problem
	Solution
	Discussion

	6.10 Tracking Rotary Movement
	Problem
	Solution
	Discussion

	6.11 Tracking the Movement of More Than One Rotary Encoder
	Problem
	Solution
	Discussion

	6.12 Tracking Rotary Movement in a Busy Sketch
	Problem
	Solution
	Discussion

	6.13 Using a Mouse
	Problem
	Solution
	Discussion
	See Also

	6.14 Getting Location from a GPS
	Problem
	Solution
	Discussion
	See Also

	6.15 Detecting Rotation Using a Gyroscope
	Problem
	Solution
	Discussion
	Using the older LISY300AL gyro
	Measuring rotation in three dimensions using the ITG-3200 sensor

	See Also

	6.16 Detecting Direction
	Problem
	Solution
	Discussion

	6.17 Getting Input from a Game Control Pad (PlayStation)
	Problem
	Solution
	Discussion
	See Also

	6.18 Reading Acceleration
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Visual Output
	7.0 Introduction
	Digital Output
	Analog Output
	Controlling Light
	LED specifications
	Multiplexing
	Maximum pin current

	7.1 Connecting and Using LEDs
	Problem
	Solution
	Discussion
	See Also

	7.2 Adjusting the Brightness of an LED
	Problem
	Solution
	Discussion
	See Also

	7.3 Driving High-Power LEDs
	Problem
	Solution
	Discussion
	How to Exceed 40 mA per Pin

	See Also

	7.4 Adjusting the Color of an LED
	Problem
	Solution
	Discussion
	See Also

	7.5 Sequencing Multiple LEDs: Creating a Bar Graph
	Problem
	Solution
	Discussion
	See Also

	7.6 Sequencing Multiple LEDs: Making a Chase Sequence (Knight Rider)
	Problem
	Solution
	Discussion

	7.7 Controlling an LED Matrix Using Multiplexing
	Problem
	Solution
	Discussion

	7.8 Displaying Images on an LED Matrix
	Problem
	Solution
	Discussion
	See Also

	7.9 Controlling a Matrix of LEDs: Charlieplexing
	Problem
	Solution
	Discussion
	See Also

	7.10 Driving a 7-Segment LED Display
	Problem
	Solution
	Discussion

	7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing
	Problem
	Solution
	Discussion

	7.12 Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift Registers
	Problem
	Solution
	Solution

	7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers
	Problem
	Solution
	Discussion
	See Also

	7.14 Increasing the Number of Analog Outputs Using PWM Extender Chips (TLC5940)
	Problem
	Solution
	Discussion
	See Also

	7.15 Using an Analog Panel Meter as a Display
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Physical Output
	8.0 Introduction
	Motion Control Using Servos
	Solenoids and Relays
	Brushed and Brushless Motors
	Stepper Motors
	Troubleshooting Motors

	8.1 Controlling the Position of a Servo
	Problem
	Solution
	Discussion

	8.2 Controlling One or Two Servos with a Potentiometer or Sensor
	Problem
	Solution
	Discussion

	8.3 Controlling the Speed of Continuous Rotation Servos
	Problem
	Solution
	Discussion

	8.4 Controlling Servos Using Computer Commands
	Problem
	Solution
	Discussion
	See Also

	8.5 Driving a Brushless Motor (Using a Hobby Speed Controller)
	Problem
	Solution
	Discussion

	8.6 Controlling Solenoids and Relays
	Problem
	Solution
	Discussion

	8.7 Making an Object Vibrate
	Problem
	Solution
	Discussion

	8.8 Driving a Brushed Motor Using a Transistor
	Problem
	Solution
	Discussion

	8.9 Controlling the Direction of a Brushed Motor with an H-Bridge
	Problem
	Solution
	Discussion

	8.10 Controlling the Direction and Speed of a Brushed Motor with an H-Bridge
	Problem
	Solution
	Discussion

	8.11 Using Sensors to Control the Direction and Speed of Brushed Motors (L293 H-Bridge)
	Problem
	Solution
	Discussion
	See Also

	8.12 Driving a Bipolar Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board)
	Problem
	Solution
	Discussion

	8.14 Driving a Unipolar Stepper Motor (ULN2003A)
	Problem
	Solution
	Discussion

	Chapter 9. Audio Output
	9.0 Introduction
	9.1 Playing Tones
	Problem
	Solution
	See Also

	9.2 Playing a Simple Melody
	Problem
	Solution

	9.3 Generating More Than One Simultaneous Tone
	Problem
	Solution
	Discussion

	9.4 Generating Audio Tones and Fading an LED
	Problem
	Solution
	Discussion
	See Also

	9.5 Playing a WAV File
	Problem
	Solution
	Discussion
	See Also

	9.6 Controlling MIDI
	Problem
	Solution
	Discussion
	See Also

	9.7 Making an Audio Synthesizer
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Remotely Controlling External Devices
	10.0 Introduction
	10.1 Responding to an Infrared Remote Control
	Problem
	Solution
	Discussion

	10.2 Decoding Infrared Remote Control Signals
	Problem
	Solution
	Discussion
	See Also

	10.3 Imitating Remote Control Signals
	Problem
	Solution
	Discussion
	See Also

	10.4 Controlling a Digital Camera
	Problem
	Solution
	Discussion
	See Also

	10.5 Controlling AC Devices by Hacking a Remote-Controlled Switch
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Using Displays
	11.0 Introduction
	11.1 Connecting and Using a Text LCD Display
	Problem
	Solution
	Discussion
	See Also

	11.2 Formatting Text
	Problem
	Solution
	Discussion
	See Also

	11.3 Turning the Cursor and Display On or Off
	Problem
	Solution
	Discussion

	11.4 Scrolling Text
	Problem
	Solution
	Discussion

	11.5 Displaying Special Symbols
	Problem
	Solution
	Discussion
	See Also

	11.6 Creating Custom Characters
	Problem
	Solution
	Discussion

	11.7 Displaying Symbols Larger Than a Single Character
	Problem
	Solution
	Discussion
	See Also

	11.8 Displaying Pixels Smaller Than a Single Character
	Problem
	Solution
	Discussion

	11.9 Connecting and Using a Graphical LCD Display
	Problem
	Solution
	Discussion

	11.10 Creating Bitmaps for Use with a Graphical Display
	Problem
	Solution
	See Also

	11.11 Displaying Text on a TV
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Using Time and Dates
	12.0 Introduction
	12.1 Creating Delays
	Problem
	Solution
	Discussion
	See Also

	12.2 Using millis to Determine Duration
	Problem
	Solution
	Discussion
	See Also

	12.3 More Precisely Measuring the Duration of a Pulse
	Problem
	Solution
	Discussion
	See Also

	12.4 Using Arduino as a Clock
	Problem
	Solution
	Discussion
	See Also

	12.5 Creating an Alarm to Periodically Call a Function
	Problem
	Solution
	Discussion

	12.6 Using a Real-Time Clock
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Communicating Using I2C and SPI
	13.0 Introduction
	I2C
	Migrating Wire code to Arduino 1.0

	Using 3.3 Volt Devices with 5 Volt Boards
	SPI
	See Also

	13.1 Controlling an RGB LED Using the BlinkM Module
	Problem
	Solution
	Discussion
	See Also

	13.2 Using the Wii Nunchuck Accelerometer
	Problem
	Solution
	Discussion
	See Also

	13.3 Interfacing to an External Real-Time Clock
	Problem
	Solution
	See Also

	13.4 Adding External EEPROM Memory
	Problem
	Solution
	Discussion
	See Also

	13.5 Reading Temperature with a Digital Thermometer
	Problem
	Solution
	Discussion
	See Also

	13.6 Driving Four 7-Segment LEDs Using Only Two Wires
	Problem
	Solution
	Discussion
	See Also

	13.7 Integrating an I2C Port Expander
	Problem
	Solution
	Discussion
	See Also

	13.8 Driving Multidigit, 7-Segment Displays Using SPI
	Problem
	Solution
	Discussion

	13.9 Communicating Between Two or More Arduino Boards
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Wireless Communication
	14.0 Introduction
	14.1 Sending Messages Using Low-Cost Wireless Modules
	Problem
	Solution
	Discussion
	See Also

	14.2 Connecting Arduino to a ZigBee or 802.15.4 Network
	Problem
	Solution
	Discussion
	Series 2 configuration
	Series 1 configuration
	Talking to the Arduino

	See Also

	14.3 Sending a Message to a Particular XBee
	Problem
	Solution
	Discussion
	See Also

	14.4 Sending Sensor Data Between XBees
	Problem
	Solution
	Discussion
	Series 2 XBees
	Series 1 XBees

	See Also

	14.5 Activating an Actuator Connected to an XBee
	Problem
	Solution
	Discussion
	Series 2 XBees
	Series 1 XBees

	See Also

	14.6 Sending Messages Using Low-Cost Transceivers
	Problem
	Solution
	Discussion
	See Also

	14.7 Communicating with Bluetooth Devices
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Ethernet and Networking
	15.0 Introduction
	Arduino 1.0 Enhancements
	Alternative Hardware for Low Cost Networking

	15.1 Setting Up the Ethernet Shield
	Problem
	Solution
	Discussion
	See Also

	15.2 Obtaining Your IP Address Automatically
	Problem
	Solution
	Discussion

	15.3 Resolving Hostnames to IP Addresses (DNS)
	Problem
	Solution
	Discussion

	15.4 Requesting Data from a Web Server
	Problem
	Solution
	Discussion

	15.5 Requesting Data from a Web Server Using XML
	Problem
	Solution

	15.6 Setting Up an Arduino to Be a Web Server
	Problem
	Solution
	Discussion

	15.7 Handling Incoming Web Requests
	Problem
	Solution
	Discussion

	15.8 Handling Incoming Requests for Specific Pages
	Problem
	Solution
	Discussion

	15.9 Using HTML to Format Web Server Responses
	Problem
	Solution
	Discussion
	See Also

	15.10 Serving Web Pages Using Forms (POST)
	Problem
	Solution
	Discussion

	15.11 Serving Web Pages Containing Large Amounts of Data
	Problem
	Solution
	Discussion
	See Also

	15.12 Sending Twitter Messages
	Problem
	Solution
	Discussion
	See Also

	15.13 Sending and Receiving Simple Messages (UDP)
	Problem
	Solution
	Discussion

	15.14 Getting the Time from an Internet Time Server
	Problem
	Solution
	Discussion
	See Also

	15.15 Monitoring Pachube Feeds
	Problem
	Solution
	Discussion
	See Also

	15.16 Sending Information to Pachube
	Problem
	Solution
	Discussion

	Chapter 16. Using, Modifying, and Creating
 Libraries
	16.0 Introduction
	16.1 Using the Built-in Libraries
	Problem
	Solution
	Discussion
	See Also

	16.2 Installing Third-Party Libraries
	Problem
	Solution
	Discussion

	16.3 Modifying a Library
	Problem
	Solution
	Discussion
	See Also

	16.4 Creating Your Own Library
	Problem
	Solution
	Discussion
	See Also

	16.5 Creating a Library That Uses Other Libraries
	Problem
	Solution
	Discussion

	16.6 Updating Third-Party Libraries for Arduino 1.0
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Advanced Coding and Memory
 Handling
	17.0 Introduction
	Preprocessor
	See Also

	17.1 Understanding the Arduino Build Process
	Problem
	Solution
	Discussion
	See Also

	17.2 Determining the Amount of Free and Used RAM
	Problem
	Solution
	Discussion
	See Also

	17.3 Storing and Retrieving Numeric Values in Program Memory
	Problem
	Solution
	Discussion
	See Also

	17.4 Storing and Retrieving Strings in Program Memory
	Problem
	Solution
	Discussion
	See Also

	17.5 Using #define and const Instead of Integers
	Problem
	Solution
	Discussion
	See Also

	17.6 Using Conditional Compilations
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Using the Controller Chip Hardware
	18.0 Introduction
	Registers
	Interrupts
	Timers
	Analog and Digital Pins
	See Also

	18.1 Storing Data in Permanent EEPROM Memory
	Problem
	Solution
	Discussion
	See Also

	18.2 Using Hardware Interrupts
	Problem
	Solution
	Discussion
	See Also

	18.3 Setting Timer Duration
	Problem
	Solution
	Discussion
	See Also

	18.4 Setting Timer Pulse Width and Duration
	Problem
	Solution
	Discussion
	See Also

	18.5 Creating a Pulse Generator
	Problem
	Solution
	Discussion
	See Also

	18.6 Changing a Timer’s PWM Frequency
	Problem
	Solution
	Discussion
	See Also

	18.7 Counting Pulses
	Problem
	Solution
	Discussion
	See Also

	18.8 Measuring Pulses More Accurately
	Problem
	Solution
	Discussion
	See Also

	18.9 Measuring Analog Values Quickly
	Problem
	Solution
	Discussion
	See Also

	18.10 Reducing Battery Drain
	Problem
	Solution
	Discussion
	See Also

	18.11 Setting Digital Pins Quickly
	Problem
	Solution
	Discussion

	18.12 Uploading Sketches Using a Programmer
	Problem
	Solution
	Discussion
	See Also

	18.13 Replacing the Arduino Bootloader
	Problem
	Solution
	Discussion
	See Also

	18.14 Reprogram the Uno to Emulate a Native USB device
	Problem
	Solution
	Discussion
	See Also

	Appendix A. Electronic Components
	Capacitor
	Diode
	Integrated Circuit
	Keypad
	LED
	Motor (DC)
	Optocoupler
	Photocell (Photoresistor)
	Piezo
	Pot (Potentiometer)
	Relay
	Resistor
	Solenoid
	Speaker
	Stepper Motor
	Switch
	Transistor
	See Also

	Appendix B. Using Schematic Diagrams and Data
 Sheets
	How to Read a Data Sheet
	Choosing and Using Transistors for Switching

	Appendix C. Building and Connecting the Circuit
	Using a Breadboard
	Connecting and Using External Power Supplies and Batteries
	Using Capacitors for Decoupling
	Using Snubber Diodes with Inductive Loads
	Working with AC Line Voltages

	Appendix D. Tips on Troubleshooting Software
 Problems
	Code That Won’t Compile
	Code That Compiles but Does Not Work as Expected

	Appendix E. Tips on Troubleshooting Hardware
 Problems
	Still Stuck?

	Appendix F. Digital and Analog Pins
	Appendix G. ASCII and Extended Character Sets
	Appendix H. Migrating to Arduino 1.0
	Migrating Print Statements
	Migrating Wire (I2C) Statements
	Migrating Ethernet Statements
	Migrating Libraries
	New Stream Parsing Functions

	Index

